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Procrustes Analysis

5.1 Introduction

This chapter outlines various methods based on Procrustes

superimposition, which are very useful tools for analysing

landmark data. We have already seen Procrustes methods

in two dimensional shape analysis in Chapter 3, where

complex arithmetic can be used. Procrustes methods were

also seen to be useful for assessing distances between

shapes in Chapter 4. In this chapter we provide a more

complete treatment of Procrustes methods suitable for two

and higher dimensional shape analysis.



PROCRUSTES ANALYSIS 145

5.2 Ordinary Procrustes Analysis

5.2.1 Full ordinary Procrustes analysis

Let us first consider the case where two configuration

matricesX1 and X2 are available (bothk × m matrices

of coordinates fromk points in m dimensions) and we

wish to match the configurations as closely as possible,

up to similarity transformations.In this chapter we

assume without loss of generality that the configuration

matrices X1 and X2 have been centredusing Equation

(1.4).

Definition 5.1 The method offull ordinary Procrustes

analysis (full OPA) involves the least squares matching

of two configurations using the similarity transformations.

Estimation of the similarity parametersγ, Γ and β is
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carried out by minimizing the squared Euclidean distance

D2
OPA(X1, X2) = ‖X2 − βX1Γ − 1kγ

T‖2
, (4.1)

where‖X‖ = {trace(XTX)}1/2 is the Euclidean norm,

Γ is an (m × m) rotation matrix (Γ ∈ SO(m)), β > 0 is

a scale parameter andγ is an (m× 1) location vector. The

minimum of Equation (4.1) is written asOSS(X1, X2),

which stands forOrdinary (Procrustes) Sum of Squares.

In Section 4.2.1, when calculating distances, we were

interested in the minimum value of an expression similar

to Equation (4.1) exceptX1 andX2 were of unit size.

Result 5.1The full ordinary Procrustes solution to the

minimization of Equation (4.1) is given by(γ̂, β̂, Γ̂) where

γ̂ = 0 (4.2)

Γ̂ = UV T (4.3)
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where

XT
2 X1 = ‖X1‖ ‖X2‖V ΛUT, U, V ∈ SO(m) (4.4)

with Λ a diagonalm × m matrix of positive elements

except possibly the last element defined in Result 4.1.

Furthermore,

β̂ =
trace(XT

2 X1Γ̂)

trace(XT
1 X1)

, (4.5)

and

OSS(X1, X2) = ‖X2‖2 sin2 ρ(X1, X2), (4.6)

whereρ(X1, X2) is the Procrustes distance of Equation

(1.22).

Proof: We wish to minimize

D2
OPA = ‖X2−βX1Γ−1kγ

T‖2 = trace(‖X2‖2+β2‖X1‖2−2βXT
2 X1Γ)+kγTγ,
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whereX1 andX2 are centred. It simple to see that we must

takeγ̂ = 0. If

Zi = HXi/‖Xi‖, i = 1, 2,

are the pre-shapes ofXi, then we need to minimize

trace(‖X2‖2 + β2‖X1‖2 − 2β‖X1‖ ‖X2‖ZT
2 Z1Γ)

and so from Result 4.1 we find the minimizingΓ from

Equation (1.16). Differentiating with respect toβ we

obtain:

∂D2
OPA

∂β
= 2βtrace(XT

1 X1) − 2trace(‖X1‖‖X2‖ZT
2 Z1Γ̂).

Hence,

β̂ =
‖X2‖trace(ZT

2 Z1Γ̂)

‖X1‖
=

‖X2‖
‖X1‖

trace(Λ) =
‖X2‖
‖X1‖

cos ρ(X1, X2).

(4.7)
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Substitutinĝγ, Γ̂ andβ̂ into Equation (4.1) leads to

OSS(X1, X2) = ‖X2‖2 + β̂2‖X1‖2 − 2β̂‖X1‖ ‖X2‖ cos ρ

and so the result of Equation (4.6) follows.2

Note thatλm will be negative in the cases where an

orthogonal transformation (reflection and rotation) would

produce a smaller sum of squares than just a rotation. In

practice, for fairly close shapesλm will usually be positive

– in which case the solution is the same as minimizing over

the orthogonal matricesO(m) instead ofSO(m).

Definition 5.2 The full Procrustes fit (or full Procrustes

coordinates) ofX1 ontoX2 is

XP
1 = β̂X1Γ̂ + 1kγ̂

T,

where we use the superscript ‘P ’ to denote the Procrustes
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superimposition. Theresidual matrix after Procrustes

matching is defined as

R = X2 − XP
1 .

Sometimes examining the residual matrix can tell us

directly about the difference in shape, e.g. if one residualis

larger than others or if the large residuals are limited to one

region of the object. In other situations it is helpful to use

further diagnostics for shape difference such as the partial

warps from thin-plate spline transformations, discussed

later in Section 10.3.3.

In general if the r̂oles of X1 and X2 are reversed,

then the ordinary Procrustes superimposition will be

different. Writing the estimates for the reverse order case

as (γ̂R, β̂R, Γ̂R) we see that̂γR = −γ̂, Γ̂R = (Γ̂)T but

β̂R 6= 1/β̂ in general. In particular, as we noted in Chapter
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3:

OSS(X2, X1) 6= OSS(X1, X2)

unless the figures are both of the same size, and so one

cannot use
√

OSS(X1, X2) as a distance. If the figures are

normalized to unit size, then we see that

OSS(X1/‖X1‖, X2/‖X2‖) = 1−






m
∑

i=1

λi







2

= sin2 ρ(X1, X2) = d2
F (X1, X2)

and in this case
√

OSS(X1/‖X1‖, X2/‖X2‖) = sin ρ(X1, X2)

is a suitable choice of shape distance, and was denoted as

dF (X1, X2) in Equation (1.15) – the full Procrustes dis-

tance. In Example 3.1 we saw the ordinary Procrustes su-

perimposition of a juvenile and an adult sooty mangabey

in two dimensions.

Since each of the figures can be rescaled, translated and

rotated (the full set of similarity transformations) we call

the methodfull Procrustes analysis. There are many other
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variants of Procrustes matching and these are discussed in

Section 5.4.

As remarked in Chapter 3, the termordinary Procrustes

refers to Procrustes matching of one observation onto

another. Where at least two observations are to be matched

the termgeneralizedProcrustes analysis is used.

While the use of many adjectives appears cumbersome

it does enable us to differentiate between various similar

methods.

Full Procrustes shape analysis for two dimensional data

is particularly straightforward using complex arithmetic

and details were given in Chapter 3.
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5.3 Generalized Procrustes Analysis

5.3.1 Introduction

Consider now the general case wheren ≥ 2 configuration

matrices are availableX1, ..., Xn. For example, the config-

urations could be a random sample from a population with

meanµ, and we wish to estimate the shape of the popula-

tion mean[µ] with an ‘average’ shape from the sample. In

order to define what is meant by a population mean shape

we have to specify a model for the population.

We consider three perturbation models for thek × m

configuration matricesXi,

Xi = µ + Ei, (4.8)

Xi = (µ + Ei)Γi + 1kγ
T
i , (4.9)

Xi = βi(µ + Ei)Γi + 1kγ
T
i , (4.10)
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whereEi are zero meank × m independent random error

matrices,µ is thek × m matrix of the mean configuration

andβi, Γi andγi are nuisance parameters for scale, rotation

and translation.

We can estimateµ directly under the measurement error

model (4.8), although this model is rarely applicable in

practice. We cannot estimate all ofµ under models (4.9)

and (4.10). We can estimate the shape[µ] or size-and-shape

[µ]S under model (4.9), and we can estimate the shape[µ]

under model (4.10).

For shape analysis our objects need not be commensurate

in scale, and so model (4.9) or (4.10) can be used.

However, for size-and-shape analysis our objects do need

to be commensurate in scale, and so model (4.9) is

appropriate.
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A least squares approach to finding an estimate of

[µ] is that of generalized Procrustes analysis, a direct

generalization of ordinary Procrustes analysis.

Definition 5.3 The method offull generalized Procrustes

analysis (full GPA) involves translating, rescaling and

rotating the configurations relative to each other so as

to minimize a total sum of squares, and the procedure

is appropriate under model (4.9) or (4.10). We minimize

a quantity proportional to the sum of squared norms of

pairwise differences,

G(X1, . . . , Xn) =
1

n

n
∑

i=1

n
∑

j=i+1

‖(βiXiΓi + 1kγ
T
i ) − (βjXjΓj + 1kγ

T
j )‖2

(4.11)

subject to a constraint on the size of the average,

S(X̄) = 1, (4.12)
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whereΓi ∈ SO(m), βi > 0, ‖X‖ =
√

trace(XTX) and

S(X) is the centroid size and the average configuration is

X̄ =
1

n

n
∑

i=1

(βiXiΓi + 1kγ
T
i ).

We write G(X1, ..., Xn) for the minimum of Equation

(4.11), subject to the constraint of Equation (4.12), and

G(X1, . . . , Xn) is called the generalized (Procrustes)

sum of squares.

Full generalized Procrustes matching involves the

superimposition of all configurations placed ‘on top of

each other’ in optimal positions by translating, rotating

and rescaling each figure so as to minimize the sum of

squared Euclidean distances. The constraint of Equation

(4.12) prevents thêβi from all becoming close to 0. Note
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that

G(X1, . . . , Xn) = inf
βi,Γi,γi

1

n

n
∑

i=1

n
∑

j=i+1

‖(βiXiΓi + 1kγ
T
i ) − (βjXjΓj + 1kγ

T
j )‖2

= inf
βi,Γi,γi

n
∑

i=1

‖(βiXiΓi + 1kγ
T
i ) − 1

n

n
∑

j=1

(βjXjΓj + 1kγ
T
j )‖2.

It follows that the minimization can be alternatively viewed

as another constrained estimation problem, where the

mean shape[µ] is to be estimated, i.e.

G(X1, . . . , Xn) = inf
µ:S(µ)=1

n
∑

i=1

OSS(Xi, µ) = inf
µ:S(µ)=1

n
∑

i=1

sin2 ρ(Xi, µ).

(4.13)

Definition 5.4 The full Procrustes fit (or full Procrustes

coordinates) of each of theXi is given by

XP
i = β̂iXiΓ̂i + 1kγ̂

T
i , i = 1, . . . , n, (4.14)

where Γ̂i ∈ SO(m) (rotation matrix), β̂i > 0 (scale

parameter),̂γT
i (location parameters),i = 1, ..., n, are the

minimizing parameters.
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An algorithm to estimate the transformation parameters

(γi, βi, Γi) is described below in Section 5.3.2. The param-

eters(Γi, βi, γi) have been termed ‘nuisance parameters’,

because they are not the parameters of primary interest in

shape analysis.

Definition 5.5 The full Procrustes estimate of mean

shape (full Procrustes mean)is given by[µ̂], where

µ̂ = arg inf
µ:S(µ)=1

n
∑

i=1

sin2 ρ(Xi, µ) = arg inf
µ:S(µ)=1

n
∑

i=1

d2
F (Xi, µ).

(4.15)

Note that

G(X1, . . . , Xn) = inf
µ:S(µ)=1

n
∑

i=1

sin2 ρ(Xi, µ).

Result 5.2The point in shape space corresponding to the

arithmetic mean of the Procrustes fits,

X̄ =
1

n

n
∑

i=1

XP
i ,
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has the same shape as the full Procrustes mean.

Proof: The result follows because we are minimizing sums

of Euclidean square distances in generalized Procrustes

analysis. The minimum of

∑ ‖XP
i − µ‖2

overµ is given byµ̂ = n−1 ∑

i X
P
i . 2

Hence, once a collection of objects has been matched into

optimal full Procrustes position with respect to each other,

calculation of the full Procrustes mean shape is simple

– it is computed by taking the arithmetic means of each

coordinate. We see that full generalized Procrustes analysis

is analogous to minimizing sums of squared distances in

the shape spaced2
F defined in Equation (1.15).
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The constraint on the sizes can be chosen in a variety of

ways. For example, an alternative to Equation (4.12) is

n
∑

i=1

S2(βiXiΓi + 1kγ
T
i ) =

n
∑

i=1

S2(Xi). (4.16)

The full Procrustes mean shape has to be found iteratively

for m = 3 and higher dimensional data, but an explicit

eigenvector solution is available for two dimensional data,

which was seen in Result 3.2.

5.3.2 Algorithm for higher dimensions

Algorithm: GPA

1. Translations. Centre the configurations to remove

location. Initially let

XP
i = Xi , i = 1, . . . , n.
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2. Rotations.For theith configuration let

X(i) =
1

n − 1

∑

j 6=i

XP
j ,

then the newXP
i is taken to be the ordinary Procrustes

superimposition, involving only rotation, of the old

XP
i on X (i). The n figures are rotated in turn. This

process is repeated until the Procrustes sum of squares

of Equation (4.11) cannot be reduced further.

3. Scaling. Let Φ be then × n correlation matrix of

the vec(XP
i ) (with the usual r̂oles of variable and

observation labels reversed) with eigenvectorφ =

(φ1, . . . , φn)
T corresponding to the largest eigenvalue.

Then from Ten Berge (1977) take

β̂i =





∑n
k=1 ‖XP

k ‖2

‖XP
i ‖2





1/2

φi,

which is repeated for alli.
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4. Repeat steps 2 and 3 until the Procrustes sum of

squares of Equation (4.11) cannot be reduced further.

The algorithm usually converges quickly.
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Figure 50 The male macaque skulls registered by full GPA. The three views are (a) the

side viewx–y, (b) the front/back viewx–z and (c) the bottom/top viewy–z projections.

Example 5.1 In Figures 50 and 51 we see the superim-
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Figure 51 The female macaque skulls registered by full GPA. The three views are (a)

thex–y, (b) thex–z and (c) they–z projections.
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Figure 52 The male (·) and female (+) Procrustes mean shapes scaled to unit size with

the male registered to the female by OPA. The three views are (a) thex–y, (b) thex–z and

(c) they–z projections.
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posed male and female macaques from the dataset de-

scribed in Section 1.2.8, using full Procrustes superimpo-

sition. There arek = 7 landmarks inm = 3 dimensions.

In two of the males the highest landmark in the ‘y’

direction (bregma) is somewhat further away (in the ‘x’

direction) than in the rest of the specimens. The full

Procrustes means (normalized to unit size) are displayed in

Figure 52 and the male mean has been superimposed onto

the female mean by OPA. The full Procrustes estimated

mean shapes for the males[µ̂1] and females[µ̂2] are full

Procrustes distancedF = 0.05 apart, and the root mean

square ofdF to the estimated mean shape within each

group is0.08 for the males and0.06 for the females. The

males are more variable in shape than the females. Formal

tests for mean shape difference are considered in Chapter
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7, and in Section 7.1.3 we see that this is not a significant

difference in mean shape.

2

Whenn = 2 objects are available we can consider OPA

or GPA to match them. The advantage of using GPA is that

the matching procedure is symmetrical in the ordering of

the objects, i.e. GPA ofX1 andX2 is the same as GPA of

X2 andX1. As we have seen in Section 5.2.1, OPA is not

symmetrical in general, unless the objects have the same

size.

5.4 Variants of Procrustes Analysis

There are many variants to Procrustes analysis. Partial

Procrustes involves just superimposition by translation and

rotation (not scaling) as opposed to full Procrustes which
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involves the full set of similarity transformations. Another

alternative could be matching using orthogonal matrices

instead of rotation matrices (reflection Procrustes).

In the

tt shapes package in R the commandprocGPA() carries

out generalized Procrustes analysis. NoteprocGPA( x

, scale=TRUE ) carries out full Procrustes analysis

(the default), andprocGPA( x , scale=FALSE )

carries out partial Procrustes analysis.

The optionreflection=TRUE uses reflection invari-

ance whereas the default value does not have reflection in-

variance.
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5.5 Shape Variability: Principal Components Analysis

The full Procrustes mean shape provides a suitable

average shape. It is also of great interest to describe

the variability in shape. Principal components analysis

(PCA) of the sample covariance matrix in Procrustes

tangent space coordinates provides a very effective means

of analysing the main modes of variation in shape. In

addition PCA is useful in shape analysis in order to reduce

the dimensionality of a problem, as it is in multivariate

analysis.

We introduced PCA of tangent space coordinates for two

dimensional data in Section 3.4. In this section we consider

the topic in more detail and give some more examples.
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5.5.1 Tangent space PCA

Cootes et al. (1992) and Kent (1994) developed PCA in

the tangent space. In particular Kent (1994) proposed PCA

of the partial Procrustes tangent coordinates defined in

Equation (1.28). Considern pre-shapesZ1, . . . , Zn with

tangent space shape coordinates given byv1, ..., vn, with

a pre-shapêµ corresponding to the full Procrustes mean

shape as the pole, so

vi = (Ikm−m − vec(µ̂)vec(µ̂)T)vec(ZiΓ̂i), (4.17)

where eachvi is a real vector of length(k − 1)m,

obtained from Equation (1.35). Alternatively we could use

the full Procrustes residualsri of Equation (3.13), or the

full Procrustes tangent coordinatesvFi of Equation (1.32)



170 STATISTICAL SHAPE ANALYSIS

which become

vFi = (Ikm−m − vec(µ̂)vec(µ̂)T)vec(β̂iZiΓ̂i). (4.18)

Note that
∑n

i=1 vFi = 0 =
∑n

i=1 ri and
∑n

i=1 vi ≈ 0.

As defined earlier in Definition 3.5, the principal

components (PCs)γj are the orthonormal eigenvectors

of the sample covariance of the tangent coordinatesSv,

corresponding to eigenvaluesλj , j = 1, . . . , p = min(n −

1, M) (M is the dimension of the shape space).

The effect of thejth PC can be seen by plotting icons

for for various values of the standardized PC score. In

particular we examine

v(c, j) = v̄ + cλ
1/2
j γj, j = 1, . . . , p, (4.19)

for a range of values of the standardized PC scorec and

then project back into configuration space using Equation
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(1.36) and Equation (1.7). The linear transformation to an

icon in the configuration space

vec(XI) = block diag(HT, . . . , HT){v(c, j)+γ} (4.20)

is a good approximation to the inverse projection from the

tangent space to an icon, near the pole.

So, to evaluate the effect of thejth PC for a range of

values ofc, calculatev from Equation (4.19), project back

using the inverse transformation to the pre-shape sphere

and then evaluate an icon using say Equation (1.7) or (4.20)

to give the centred pre-shape.

There are several ways to visualize the effect of each

PC:

1. Evaluate and plot an icon for a few values ofc ∈

[−3, 3], wherec = 0 corresponds to the full Procrustes

mean shape. The plots could either be separate or
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superimposed.

2. We could draw vectors from the mean shape to the

shape atc = +3 and/orc = −3 say to understand

the structure of shape variability. The plots should

clearly label which directions correspond to positive

and negativec if both values are used.

3. One could superimpose a square grid on the mean

shape and deform the grid to icons in either direction

along each principal component. The methods of

Chapter 10 will be useful for drawing the grids, and

for example the thin-plate spline deformation could

be used.

4. One could animate a sequence of icons backwards and

forwards along the rangec ∈ [−3, 3]. This dynamic

method is perhaps the most effective for displaying
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each PC.

In datasets where the shape variability is small it is often

beneficial to magnify the range ofc in order to easily

visualize the effect of each PC.

In some datasets only a few PCs may be required to

explain a high percentage of shape variability. Some PCs

may correspond to interpretable aspects of variability (e.g.

thickness, bending, shear) although there are often many

combined effects in each PC.

By carrying out PCA in the tangent space we are

decomposing variability (the total sum of Procrustes

distances) into orthogonal components, with each PC

successively explaining the highest variability in the

data, subject to being orthogonal to the higher PCs.

If the structure of shape variability is that the points
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are approximately independent and isotropic with equal

variances, then the eigenvaluesλj of the covariance matrix

in tangent space will be approximately equal (this property

is proved in Section 6.6.6). If there are strong dependencies

between landmarks, then only a few PCs may capture a

large percentage of the variability.

An alternative decomposition which weights points close

together differently from those far apart is Bookstein’s

(1991) relative warps, described in Section 10.3.5.

Example 5.2A random sample of 23 T2 mouse vertebral

outlines was taken from the Small group of mice

introduced in Section 1.2.1. Six mathematical landmarks

are located on each outline. In Example 3.3 we saw

the PCs for these landmark data. Consider taking further

pseudo-landmarks around the outline. In between each pair
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of landmarks 9 equally spaced pseudo-landmarks were

placed (similarly to Figure 4), giving a total ofk =

60 landmarks inm = 2 dimensions. In Figure 53 we

see the Procrustes superimposed outlines, after initially

standardizing to unit size.
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Figure 53 Procrustes rotated outlines of T2 Small mouse vertebrae. The six

mathematical landmarks are marked (+) on each outline.

The sample covariance matrix in the tangent space
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Figure 54 Two rows of series of T2 vertebral shapes evaluated along thefirst two PCs –

theith row shows the shapes atc ∈ {−6,−4,−2, 0, 2, 4, 6} standard deviations along the

ith PC. Note that in each row the middle plot (c = 0) is the full Procrustes mean shape. By

magnifying the usual range ofc by 2 the effect of each PC is more clearly illustrated.
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Figure 55 The first (a) and second (b) PCs for the T2 Small vertebra data.The plot

shows the icons in each row from the previous figure overlaid on the same picture, i.e.

each plot shows the shapes atc ∈ {−6,−4,−2} (·—·—·—·), the mean shape atc = 0 (+

- - - - + - - - - +) and the shapes atc ∈ {+3, +2, +1} (+.....+.....+.....+.....+) standard

deviations along each PC.
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Figure 56 The first (a) and second (b) PCs for the T2 Small vertebra outline data. Each

plot shows the full Procustes mean shape with vectors drawn from the mean (+) to an icon

which isc = +6 standard deviations along each PC from the mean shape.
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Figure 57 The first (a) and second (b) PCs for the T2 Small vertebra outline data. A

square grid is drawn on the mean shape and deformed using a pair of thin-plate splines

(see Chapter 10) to an iconc = 6 standard deviations along each PC. The plots just show

the deformed grid atc = 6 for each PC and not the starting grids on the mean.
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(using the partial Procrustes coordinates of Equation

(1.28)) is evaluated and in Figure 54 we see sequences

of shapes evaluated along the first two PCs. Alternative

representations are given in Figures 55, 56 and 57. Shapes

are evaluated in the tangent space and then projected

back using the approximate linear inverse transformation

of Equation (4.20) for visualization. The percentages of

variability captured by the first two PCs are 65% and 9%,

so the first PC is a very strong component here.

The first PC includes a contribution from the length

of the spinous process (the protrusion on the ‘top’ of

the bone) in contrast to the relative width of the bone.

The angle between lines joining landmarks 1 to 5 and

2 to 3 decreases as the height of landmark 4 increases,

whereas there is little change in the angles from the lines
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joining 1 to 6 and 2 to 6. The second PC includes the

effect of asymmetry in the end of the spinous process and

asymmetry in the rest of the bone.

Pairwise plots of the elements of the vector(si, dFi, ci1, ci2, ci3)
T, i =

1, . . . , n, are given in Figure 58, wheresi are the centroid

sizes,dFi are the full Procrustes distances to the mean, and

ci1, ci2 and ci3 are the first three standardized PC scores.

There appears to be one bone that is much smaller than the

rest and it also appears that there is some correlation be-

tween the first PC score and the centroid size of the bones.

An overall measure of shape variability is the root mean

square of full Procrustes distanceRMS(dF ), which here

is 0.07, and the shape variability in the data is quite small.

2
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Figure 58 Pairwise plots of(si, dF i, ci1, ci2, ci3)
T, i = 1, . . . , n, centroid size, full

Procrustes distance to the mean shape and the first three standardized PC scores, for the

T2 Small outline data.
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5.5.2 Point distribution models

Principal components analysis with the full Procrustes

coordinates of Equation (3.13) has a particularly simple

formulation. Cootes et al. (1992, 1994) use PCA to develop

the ‘point distribution model’ (PDM), which is a PC model

for shape and uses Procrustes residuals rather than tangent

coordinates. Givenn independent configuration matrices

X1, ..., Xn the figures are registered toXP
1 , . . . , XP

n by

full generalized Procrustes analysis. The estimate of mean

shape is taken to be the full Procrustes meanµ̂ which has

the same shape as̄X = 1
n

∑n
i=1 XP

i . The sample covariance

matrix is

1

n

n
∑

i=1

vec(XP
i − X̄)(vec(XP

i − X̄))T
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and the PCs are the eigenvectors of this matrix,γj, j =

1, . . . , min(n − 1, M), with corresponding decreasing

eigenvaluesλj. Note that PCA using this formulation is the

same (up to an overall scaling) as using the full Procrustes

tangent coordinates of Equation (3.13), with the tangent

coordinates pre-multiplied byHT, the transpose of the

Helmert sub-matrix.

Visualization of the PCs is carried out as in the previous

section. In particular, the structure in thejth PC can be

viewed through plots of an icon for mean shapeµ̂ with

displacement vectors

vec(µ̂) + cλj
1/2γj

for the shapes corresponding toc ∈ [−3, 3].

Example 5.3An example of the PDM approach is given
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in Figure 59 taken from Cootes et al. (1994), who describe

a flexible model for describing shape variability in hands.

In Figure 59 the first PCincludes the spreading of

the fingers, the second PC includes movement of the

thumb relative to the fingers, and the third PC includes

movement of the middle finger.The shape variability

here is complicated because there are multiple effects.

As well as the biological shape variability of hands, the

relative positions of the fingers contributes greatly to shape

variability here. 2

5.5.3 PCA in shape analysis and multivariate analysis

The algebra in geometrical shape analysis is the same as

that of conventional PCA in multivariate analysis, since

we are assuming our data are sufficiently concentrated that
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Figure 59 Varying hands: the first three PCs (from Cootes et al., 1994) with values of

c ∈ {−2,−1, 0, 1, 2} here.
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a tangent plane approximation to shape space can used.

However, what is different here is that we project back

into configuration space to visualize directly and clearly

the effects of each PC.


