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Planar Procrustes Analysis

3.1 Introduction

This chapter provides a straightforward introduction to

some key concepts when a random sample of planar

objects is available. Important aspects of shape analysis are

to obtain a measure of distance between shapes, to estimate

average shapes from a random sample and to estimate

shape variability from a random sample. In this chapter we

discuss these ideas by considering the particular case of

data in two dimensions. The use of complex notation leads

to simple methodology in this important case.
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A more comprehensive treatment of shape distances is

given in Chapter 4 and a detailed description of Procrustes

analysis is given in Chapter 5.

3.2 Shape Distance and Procrustes Matching

Consider twocentred configurationsy = (y1, ..., yk)
T and

w = (w1, ..., wk)
T, both in Ck, with y∗1k = 0 = w∗1k,

wherey∗ denotes the transpose of the complex conjugate

of y. In order to compare the configurations in shape we

need to establish a measure of distance between the two

shapes.

A suitable procedure is to matchw to y using the

similarity transformations and the differences between

the fitted and observedy indicate the magnitude of the

difference in shape betweenw andy. Consider the complex
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regression equation

y = (a + ib)1k + βeiθw + ǫ

= [1k, w]A + ǫ

= XDA + ǫ, (3.1)

whereA = (A1, A2)
T = (a + ib, βeiθ)T are the2 × 1

complex parameters with translationa+ib, scaleβ > 0 and

rotation0 ≤ θ < 2π; ǫ is ak×1 complex error vector; and

XD = [1k, w] is thek × 2 ‘design matrix’. To carry out the

superimposition we could estimateA by minimizing the

least squares objective function, the sum of square errors

D2(y, w) = ǫ∗ǫ = (y − XDA)∗(y − XDA),

wherez∗ = (c+id)∗ = (c−id)T is the complex conjugate

of the transpose of the complex vectorz, wherec = Re(z)

andd = Im(z). The full Procrustes superimposition ofw
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ony is obtained by estimatingA with Â, where

Â = (â+ib̂, β̂eiθ̂)T = arginf ǫ∗ǫ = arginf(y−XDA)∗(y−XDA).

Definition 3.1 The full Procrustes fit (superimposition)

of w ontoy is

wP = XDÂ = (â + ib̂)1k + β̂eiθ̂w,

where(β̂, θ̂, â, b̂) are chosen to minimize

D2(y, w) = ‖y − wβeiθ − (a + ib)1k‖2.

Remember that we are taking the configurationsy and

w to be both centred (or ‘centered’ using US spelling of

course), i.e.1T
k w = 0 = 1T

k y.

Result 3.1The full Procrustes fit has matching parameters

â + ib̂ = 0, (3.2)
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θ̂ = arg(w∗y) = −arg(y∗w), (3.3)

β̂ = (w∗yy∗w)1/2/(w∗w). (3.4)

Proof: We wish to minimize (overβ, θ, a,b) the expression

D2 = ǫ∗ǫ

= ‖y − wβeiθ − (a + ib)1k‖2 (3.5)

= y∗y + β2w∗w − y∗wβeiθ − w∗yβe−iθ + k(a2 + b2)

(remembery andw are centred). Clearly, the minimizinga

andb are zero. Lety∗w = γeiφ (γ ≥ 0) and then

β(y∗weiθ+w∗ye−iθ) = β(γei(θ+φ)+γe−i(θ+φ)) = 2βγ cos(θ+φ).

So to minimize‖y−βeiθw‖2 overθ we need to maximize

2βγ cos(θ + φ). Clearly, a solution forθ is θ̂ = −φ =
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−arg(y∗w). To find the minimizing scale we solve

∂D2

∂β
= 0 = 2βw∗w − 2γ,

whereγ = |y∗w|. Hence,

β̂ = |y∗w|/(w∗w)

as required. 2

The solution is the standard least squares solution (but

with complex variables) and we can write the solution in

the familiar form

Â = (Â1, Â2)
T = (X∗

DXD)−1X∗
Dy ⇒ Â1 = 0, Â2 = w∗y/(w∗w).

(3.6)

Note that the full Procrustes fit ofw onto y is given

explicitly by

wP = XDÂ = β̂eiθ̂w = w∗yw/(w∗w).
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The residual vectorr = y − XDÂ is given by

r = [Ik − XD(X∗
DXD)−1X∗

D]y = (Ik − Hhat)y

whereHhat is the ‘hat’ matrix forXD, i.e.

Hhat = XD(X∗
DXD)−1X∗

D.

The minimized value of the objective function is

D2(r, 0) = r∗r = y∗y − (y∗ww∗y)/(w∗w). (3.7)

Now this expression is not symmetric iny andw unless

y∗y = w∗w. A convenient standardization is to take the

configurations to be unit size, i.e.

√
y∗y =

√
w∗w = 1.

So, if we include standardization, then we obtain a suitable

measure of shape distance.

Definition 3.2 The full Procrustes distance between
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complex configurationsw andy is given by

dF (w, y) = inf
β,θ,a,b

∥

∥

∥

∥

∥

∥

y

‖y‖ − w

‖w‖βeiθ − 1k(a + ib)

∥

∥

∥

∥

∥

∥

=

{

1 − y∗ww∗y

w∗wy∗y

}1/2

. (3.8)

The expression for the distance follows from Equation

(3.7).

Important point: The termfull is used because the full

set of Euclidean similarity transformations is estimated in

the matching (translation, rotationand scale), but note that

y andw are pre-scaled to unit size.

Note that the full Procrustes fit ofw onto y is actually

obtained by complex linear regression ofy onw.

The term ‘Procrustes’ is used because the above

matching operations are identical to those of Procrustes

analysis, a commonly used technique for comparing
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matrices (up to transformations) in multivariate analysis

(see Mardia et al., 1979, p.416). In Procrustes analysis

the optimal transformation parameters are estimated by

minimizing a least squares criterion. The term ‘Procrustes

analysis’ was first used by Hurley and Cattell (1962) in

factor analysis.

In Greek mythology Procrustes was the nickname of a

robber Damastes, who lived by the road from Eleusis to

Athens. He would offer travellers a room for the night

and fit them to the bed by stretching them if they were

too short or chopping off their limbs if they were too

tall. The analogy is rather tenuous but we can regard one

configuration as the bed and the other as the person being

‘translated’, ‘rotated’ and possibly ‘rescaled’ so as to fitas

close as possible to the bed.
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We discuss Procrustes methods in further detail in

Chapter 5.

Example 3.1Consider a juvenile and an adult from the

sooty mangabey data of Section 1.2.9. The unregistered

outlines are shown in Figure 29. In Figure 30 we see the

full Procrustes fit of the adult onto the juvenile and in
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Figure 31 we see the full Procrustes fit of the juvenile

onto the adult. In matching the juvenile to the adultθ̂ =

45.5◦ and β̂ = 1.131. We see that the estimate of scale

in matching the adult to the juvenile iŝβR = 0.875

and the rotation iŝθR = −45.5◦. Note thatβ̂R 6= 1/β̂

because the adult and juvenile are not the same size (the

matching is not symmetric). Computing the measure of full

Procrustes shape distance we see thatdF = 0.105. Further

understanding of shape distances is given in Chapter 4

which will help us to interpret this value of the distance.

2

This is not the only choice of distance between shapes,

and further choices of distance are considered in Section

4.2.2. However, the full Procrustes distance is a natural

distance from a statistical point of view, obtained from a
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Figure 29 Unregistered sooty mangabeys: juvenile (—–) and adult (- - -).

•
•

•

•

•

•

•
•

••••

x

y

-2000 -1000 0 1000 2000 3000

-2
00

0
-1

00
0

0
10

00
20

00
30

00

•
•

•

•

•

•

••
••••

•

                        

Figure 30 The Procrustes fit of the adult sooty mangabey (- - -) onto the juvenile (—–).
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Figure 31 The Procrustes fit of the juvenile sooty mangabey (—–) onto the adult (- - -).

least squares criterion and optimizing over the full set of

similarity parameters. The squared full Procrustes distance

naturally appears exponentiated in the density for many

simple probability distributions for shape, as we shall see

in Chapter 6.

The subject of shape analysis is different from conven-

tional multivariate analysis, because the invariances under

similarity transformations lead to a non-Euclidean distance
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as the suitable measure of distance between shapes. We

shall use the full Procrustes distance to assess closeness

of shapes and to provide a criterion for estimating a mean

shape.

3.3 Estimation of Mean Shape

There are many situations where we wish to obtain an

estimate of an average shape. We now consider a method

for estimating a population mean shape, which provides a

suitable notion of average shape.

Consider the situation where a random sample of con-

figurationsw1, . . . , wn is available from the perturbation

model

wi = γi1k + βie
iθi(µ + ǫi), i = 1, . . . , n,

whereγi ∈ C are translation vectors,βi ∈ IR+ are scale
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parameters,0 ≤ θi < 2π are rotations,ǫi ∈ C are

independent zero mean complex random errors, andµ is

the population mean configuration. We can estimate[µ],

the shape of the population mean (mean shape), by a

variety of methods.

Definition 3.3 The full Procrustes estimate of mean

shape [µ̂] is obtained by minimizing (overµ) the sum

of square full Procrustes distances from eachwi to an

unknown unit size mean configurationµ, i.e.

[µ̂] = arg inf
µ

n
∑

i=1

d2
F (wi, µ).

We shall often use the termfull Procrustes meaninstead

of ‘full Procrustes estimate of mean shape’, in order to

shorten terminology. It should be remembered throughout
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that the full Procrustes mean is a sample estimate of mean

shape.

Let us assume that the configurationsw1, . . . , wn have

been centred, so thatw∗
i 1k = 0.

Result 3.2(Kent, 1994)Thefull Procrustes mean shape

[µ̂] can be found as the eigenvector corresponding to the

largest eigenvalue of thecomplex sum of squares and

products matrix

S =
n

∑

i=1

wiw
∗
i /(w∗

i wi) =
n

∑

i=1

ziz
∗
i , (3.9)

where thezi = wi/‖wi‖, i = 1, . . . , n, are the pre-

shapes.

Proof: We wish to minimize

n
∑

i=1

d2
F (wi, µ) =

n
∑

i=1







1 − µ∗wiw
∗
i µ

w∗
i wiµ∗µ







(3.10)

= n − µ∗Sµ/(µ∗µ). (3.11)



102 STATISTICAL SHAPE ANALYSIS

Therefore,

µ̂ = arg sup
‖µ‖=1

µ∗Sµ.

Hence, µ̂ is given by the complex eigenvector corre-

sponding to the largest eigenvalue ofS (using, for exam-

ple, Mardia et al., 1979, Equation A.9.11). All rotations of

µ̂ are also solutions, but these all correspond to the same

shape[µ̂]. 2

The eigenvector is unique (up to a rotation) provided

there is a single largest eigenvalue ofS (which is the case

for most practical datasets). We shall see in Section 6.2

that the solution corresponds to the maximum likelihood

estimate of modal shape under the complex Bingham

model.
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The full Procrustes fits or full Procrustes coordinates

of w1, . . . , wn are

wP
i = w∗

i µ̂wi/(w∗
i wi), i = 1, . . . , n, (3.12)

where eachwP
i is the full Procrustes fit ofwi onto µ̂.

Calculation of the full Procrustes mean shape can also

be obtained by taking the arithmetic mean of the full

Procrustes coordinates, i.e.1
n

∑n
i=1 wP

i has the same shape

as the Procrustes mean shape[µ̂] (see Result 5.2).

TheProcrustes residualsare calculated as

ri = wP
i −





1

n

n
∑

i=1

wP
i



 , i = 1, . . . , n, (3.13)

and the Procrustes residuals are useful for investigating

shape variability.

Important point: When several objects are fitted

using Procrustes superimposition the method has been
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called generalized Procrustes analysis (GPA)(Gower,

1975), whereas when a single object is fitted to one

other, as in Section 3.2, the method has been called

ordinary Procrustes analysis (OPA). Note that OPA is

not symmetrical in the ordering of the objects, whereas

GPA is invariant under re-orderings of the objects.

An alternative equivalent procedure to working with

centred configurations would be to work with the

Helmertized landmarksHwi, whereH is the sub-Helmert

matrix given in Equation (2.9). This procedure was

originally used by Kent (1991, 1992, 1994) and the least

squares estimate of shape is the leading eigenvectorµ̂1 of

HSHT. Note thatHTµ̂1 is identical toµ̂, up to an arbitrary

rotation.

Definition 3.4 To obtain an overall measure of shape
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variability we consider theroot mean squareRMS(dF )

of full Procrustes distance from each configuration to the

full Procrustes mean[µ̂],

RMS(dF ) = n−1
n

∑

i=1

d2
F (wi, µ̂). (3.14)

Example 3.2 In Figure 32 we see the raw digitized data

from the female and male gorilla skulls from the dataset

described in Section 1.2.2. The landmarks have been

recorded by a digitizer to be registered so thatopisthion

is at the origin and the line fromopisthion to basion

is horizontal. There arek = 8 landmarks inm =

2 dimensions. In Figures 33 and 34 we also see full

Procrustes fits of the females and males separately. For

each sex the landmarks match up quite closely because

the shape variability is small. The full Procrustes mean for

each sex is found from the dominant eigenvector of the
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complex sum of squares and products matrix for each sex.

In Figure 35 we see the full Procrustes superimposition

of the female average shape and the male average shape

(by GPA). It is also of interest to assess whether there is a

significant average shape difference between the sexes and,

if so, to describe the difference. We consider methods for

testing for average shape differences in Chapter 7. The full

Procrustes distancedF between the mean shapes is0.059,

and the within-sampleRMS(dF ) is 0.044 for females and

0.050 for males. We see later in Section 7.1.2 that the

difference in mean shapes between the sexes is statistically

significant. 2
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3.4 Shape Variability

After having obtained an average configuration we often

wish to examine the structure of shape variability in a

sample. A suitable method is to investigate the shape

variability in a linearized space about the average shape (a

tangent space). For example, we could consider principal

components analysis of the Procrustes residuals (which are

approximate tangent coordinates) and we now denote the

real vectors of the tangent coordinates asvi, i = 1, . . . , n.

These could be the Procrustes residualsri of Equation

(3.13) or another choice of tangent coordinates which we

introduce in Chapter 4.

Definition 3.5 Let Sv be the sample covariance matrix of
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some tangent coordinatesvi, i.e.

Sv =
1

n

n
∑

i=1

(vi − v̄)(vi − v̄)T

where v̄ = 1
n

∑

vi. The orthonormal eigenvectors ofSv,

denoted byγj, are theprincipal components of Sv with

corresponding eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0,

wherep = min(n − 1, M), whereM = 2k − 4 is the

dimension of the shape space. Theprincipal component

scorefor theith individual on thejth principal component

(PC) is given by

sij = γT
j (vi − v̄), i = 1, . . . , n ; j = 1, . . . , p,

and a PC summary of the data in the tangent space is

vi = v̄ +
p

∑

j=1

sijγj, (3.15)

for i = 1, . . . , n. Thestandardized PC scoresare

cij = sij/λ
1/2
j , i = 1, . . . , n; j = 1, . . . , p.
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Note that we usually choose the pole such thatv̄ ≈ 0 or

v̄ = 0. The effect of thejth PC can be seen by examining

Equation (3.15) for various values of the standardized PC

score, and in particular we examine

v = v̄ + cλ
1/2
j γj, j = 1, . . . , p, (3.16)

for a range of values of the standardized PC scorec and

then project back into configuration space (by adding on

the Procrustes mean if using Procrustes residuals).

Suitable values that would cover the full range of the

data arec ∈ [−3, 3] as we would have approximately

c ∼ N(0, 1) under a multivariate normal model for the

tangent coordinates (and hence 99.7% of the variability in

the rangec ∈ [−3, 3]). Sometimes we wish to exaggerate
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the effect of a PC by consideringc over a wider range, e.g.

c ∈ [−6, 6].

The percentage of variability captured by thejth PC

(j = 1, . . . , p) is

100λj
∑p

j=1 λj
.

Example 3.3Consider the mouse vertebrae data described

in Section 1.2.1. There arek = 6 landmarks inm = 2

dimensions. The analysis here is similar to Kent (1994).

In Figure 36 we have a plot of the Procrustes mean shape

obtained from the dominant eigenvector of the complex

sum of squares and products matrix. The Procrustes mean

shape is centred, with unit size, and rotated so that the

line joining the two farthest apart landmarks is horizontal.
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Hence, the mean shape has coordinates

(−0.51−0.14i, 0.51−0.14i, 0.09+0.15i, 0.01+0.42i,−0.07+0.16i,−0.03−0.45i)T.

In order to examine the structure of variability we

examine the eigenstructure of the sample covariance

matrix Sv of the Procrustes residuals. The square roots of

the eigenvalues ofSv are

0.054, 0.020, 0.018, 0.017, 0.011, 0.010, 0.008, 0.005, 0, 0, 0, 0.

Hence, the first two principal components explain 69%

and 10% of the variability, respectively. The last four zero

eigenvalues are expected due to the four constraints for

location, rotation and scale. For each principal component,

shapes at6 standard deviations away from the mean are

calculated. In Figure 36 we see the mean shape with these

unit vectors drawn for the first two PCs. The vectors of the
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first and second PCs in the figure are given by

(0.11− 0.11i,−0.11− 0.12i,−0.04,−0.01 + 0.22i, 0.04− 0.01i, 0.01 + 0.01i)T,

(0.05 + 0.03i, 0.04 + 0.01i,−0.01,−0.06 + 0.01i, 0.03− 0.02i,−0.06− 0.03i)T.

There appears to be a high dependence between certain

landmarks, as indicated by the fact that the first PC

explains such a large proportion of the variability. The first

PC involves a shift downwards and inwards for landmarks

1 and 2, balanced by an upwards movement for landmark

4. ‘At the same time landmarks 3 and 5 move inwards

slightly whereas there is little movement in landmark 6.

The second PC is not symmetric. If we had chosen to

display the PCs in a different manner (e.g. relative to

landmarks 1 and 2 as in Bookstein coordinates), then our

interpretation would be different. In particular we display

the PCs in Figure 37 where the mean and a figure at
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3 standard deviations along the PC have been registered

relative to landmarks 1 and 2. Our interpretation would be

that the first PC includes the movement of landmarks 3, 4,

5 and 6 upwards relative to points 1 and 2. Landmark 4

shows the largest movement, followed by 3 and 5 together

and landmark 6 shows the smallest movement. Both of

these interpretations are correct, as they are describing the

same PCs.2
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Figure 32 (a) The 30 female gorilla skull landmarks registered in the coordinate system

as recorded by a digitizer. (b) The original 29 male gorilla skull landmarks.
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Figure 33 The full Procrustes fits of the female gorilla skulls.
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Figure 34 The full Procrustes fits of the male gorilla skulls.
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Figure 35 The male (—-) and female (- - -) full Procrustes mean shapes registered by

GPA.
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Figure 36 The Procrustes mean shape of the T2 vertebra data (landmarksat the dots)

and vectors to6 standard deviations along the first and second principal components. The

first PC is shown in (a) and the second PC is shown in (b).
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Figure 37 The mean shape with vectors to a figure at6 standard deviations along the

first PC (a) and second PC (b), both the same PCs as in Figure 36 but the icons are

registered on a common baseline 1, 2.


