
PRELIMINARIES: SIZE MEASURES AND SHAPE COORDINATES 75

2.3.4 Kendall coordinates: Planar case

Kendall coordinates are similar to Bookstein coordinates

but location is removed in a different manner. We first need

to define the Helmert sub-matrix which is used to remove

location.

The Helmert sub-matrixH is the (k − 1) × k Helmert

matrix without the first row. The full Helmert matrixHF ,

which is commonly used in Statistics, is a squarek × k

orthogonal matrix with its first row of elements equal to

1/
√
k, and the remaining rows are orthogonal to the first

row. We drop the first row ofHF so that the transformed

HX does not depend on the original location of the

configuration.

Definition 2.5 The jth row of the Helmert sub-matrix H
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is given by

(hj, ..., hj,−jhj, 0, ..., 0) , hj = −{j(j+1)}−1/2, (2.9)

and so the jth row consists of hj repeated j times, followed

by −jhj and then k − j − 1 zeros, j = 1, ..., k − 1.

Fork = 3 the full Helmert matrix is explicitly
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Fork = 4 points the full Helmert matrix is
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and the Helmert sub-matrix is

H =
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Consider the original complex landmarkszo = (zo
1, ..., z

o
k)

T

and remove location by pre-multiplying by the Helmert

sub-matrixH to givezH = Hzo = (z1, ..., zk−1)
T.

Definition 2.6 The Kendall coordinatesare given by

uK
j + ivK

j =
zj−1

z1

, j = 3, . . . , k. (2.10)

There is a simple 1-1 correspondence between Kendall

and Bookstein coordinates. If we write

wB = (uB
3

+ ivB
3
, ..., uB

k + ivB
k )T
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for Bookstein coordinates and

wK = (uK
3

+ ivK
3
, ..., uK

k + ivK
k )T

for Kendall coordinates, then it follows that

wK =
√

2H1w
B (2.11)

whereH1 is the lower right(k − 2) × (k − 2) partition

matrix of the Helmert sub-matrixH. Note that

HT

1 H1 = Ik−2−
1

k
1k−21

T

k−2 , |H1|2 = 2/k, (HT

1 H1)
−1 = Ik−2+

1

2
1k−21

T

k−2

so linear transformation from one coordinate system to the

other is straightforward. The inverse transformation is

wB = (HT

1
H1)

−1HT

1
wK/

√
2.

Fork = 3 we have the relationship

uB
3

+ ivB
3

=
zo
3
− 1

2
(zo

1
+ zo

2
)

zo
2 − zo

1

=

√
3

2
(uK

3
+ ivK

3
)

and so Kendall coordinates in this case are the coordinates

of the third landmark after transforming landmarks 1
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and 2 to (−1/
√

3, 0) and (1/
√

3, 0) by the similarity

transformations. The total transformation from(zo
1
, zo

2
, zo

3
)

to Kendall coordinates is

zo
1 → − 1√

3
, zo

2 → 1√
3
, zo

3 → uK
3 + ivK

3 .

Throughout the text we shall often refer to the

real (2k − 4)-vector of Kendall coordinatesuK =

(uK
3
, . . . , uK

k , v
K
3
, . . . , vK

k )T, stacking the coordinates in

this particular order.

2.3.5 Kendall’s spherical coordinates for triangles

For k = 3 we will see in Section 4.2.4 that the shape

space is a sphere with radius1

2
. A mapping from Kendall

coordinates to the sphere of radius1

2
is

x =
1 − r2

2(1 + r2)
, y =

uK
3

1 + r2
, z =

vK
3

1 + r2
(2.12)
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andr2 = (uK
3

)2 + (vK
3

)2, so thatx2 + y2 + z2 = 1

4
, where

uK
3

andvK
3

are Kendall coordinates of Section 2.3.4.

Definition 2.7 Kendall’s spherical coordinates(θ, φ) are

given by the polar coordinates

1

2
sin θ cosφ =

1 − r2

2(1 + r2)
, 1

2
sin θ sinφ =

uK
3

1 + r2
, 1

2
cos θ =

vK
3

1 + r2
,

(2.13)

where 0 ≤ θ ≤ π is the angle of latitude and 0 ≤ φ < 2π

is the angle of longitude.

The relationship between(uK
3
, vK

3
) and the spherical

shape variables (Mardia, 1989c) is given by

uK
3

=
sin θ sinφ

1 + sin θ cosφ
,

vK
3

=
cos θ

1 + sin θ cosφ
. (2.14)

The sphere can be partitioned into 6 lunes and 12 half-

lunes. In order to make the terminology clear, one example
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full-lune is 0 ≤ φ ≤ π/3, 0 ≤ θ ≤ π and one example

half-lune is0 ≤ φ ≤ π/3, 0 ≤ θ ≤ π/2.

In Figure 27 we see triangle shapes located on the

spherical shape space. The equilateral triangle with anti-

clockwise labelling corresponds to the ‘North pole’ (θ =

0) and the reflected equilateral triangle (with clockwise

labelling) is at the ‘South pole’ (θ = π). The flat

triangles (three collinear points) lie around the equator

(θ = π/2). The isosceles triangles lie on the meridiansφ =

0, π/3, 2π/3, π, 4π/3, 5π/3. The right-angled triangles lie

on three small circles given by

sin θ cos

(

φ− 2kπ

3

)

= 1

2
, k = 0, 1, 2,

and we see the arc of unlabelled right-angled triangles on

the front half-lune in Figure 27.
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Reflections of triangles in the upper hemisphere at(θ, φ)

are located in the lower hemisphere at(π − θ, φ). In

addition, permuting the triangle labels gives rise to points

in each of the six equal half-lunes in each hemisphere.

Thus, if invariance under labelling and reflection was

required, then we would be restricted to one of these half-

lunes, for example the sphere surface defined by0 ≤ φ ≤

π/3, 0 ≤ θ ≤ π/2. Consider a triangle with labels A,B

and C, and edge lengths AB, BC and AC. If the labelling

and reflection of the points was unimportant, then we could

relabel each triangle so that, for example, AB≥ AC ≥ BC

and point C is above the baseline AB.

For practical analysis and the presentation of data it is

often desirable to use a suitable projection of the sphere

for triangle shapes. Kendall (1983) defined an equal area
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Flat triangles

1 2

3

1 2

3

Isosceles triangles Equilateral (North pole)

Reflected equilateral (South pole)

(Equator) 

 Right-angled 
Unlabelled

φ=0 φ=π/3

φ=5π/3 φ=2π/3
θ=π/2

θ=0

θ=π

Figure 27 Kendall’s spherical shape space for triangles inm = 2 dimensions. The

shape coordinates are the latitudeθ (with zero at the North pole) and the longitudeφ.
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projection of one of the half-lunes of the shape sphere

to display unlabelled triangle shapes. The projected lune

is bell-shaped and this graphical tool is also known as

‘Kendall’s Bell’ or the spherical blackboard (an example

is given later in Figure 136).

An alternative equal-area projection is the Schmidt

net (Mardia, 1989c) otherwise known as the Lambert

projection given by

ξ = 2 sin

(

θ

2

)

, ψ = φ ; 0 ≤ ξ ≤ √
2, 0 ≤ ψ < 2π.

In Figure 28 we see a plot of one of the half-lunes

on the upper hemisphere of shape space projected onto

the Schmidt net. Example triangles are drawn with their

centroids at polar coordinates(ξ, ψ) in the Schmidt net.
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Figure 28 Part of the shape space of triangles projected onto the equal-area projection

Schmidt net. If relabelling and reflection was not important, then all triangles could be

projected into this sector.


