STAT 718A Shape and Image Analysis

Part |l: Statistical Image Analysis

1 INTRODUCTION

1.1 Notation and definitions

An imageis a two dimensional visual representation of an objectdlig2d or
3d). Adigital image z, is a discrete version of the continuous image, usually
achieved by aggregation or sampling. L€t, j) be the value opixel (i, j),
i =1,2,....,randj = 1,2,...,c. The termpixelis derived from the phrase
“picture element”.

Clearly, we can think of the image as a large matrix witlows andc
columns, andz(i, j) as the value in row and columnj. Commonly, both-

andc are powers of 2, eg* = 16.



z(1,1) | z(1,2) x(1,c)

(i, 5)

x(r,1) | z(r,2) . x(r, c)

The pixel valuese(z, j) often take an integer value in the range 0 to 255,
that is2® = 256 levels (sometimes this is achieved by scaling), or they migh
be binary (either 0 or 1). We shall denote the set of possildel palues by
S ={0,1,...,m}. So we can writé) < z(i,7) < morz(i,j) € S, and hence
x € 5", wheren = r x cis the total number of pixels. When displaying images

it is usual, but not universal, to show 0 as “black” and 2551 dor binary) as
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“white” and other values as various shades of grey.

Figure 1: A simple digital image of the letter H.

In Figure 1 we see a simple = 7) x (¢ = 6) image of the letter ‘H’ with



grey levels in the matrix

0 211 2 1 243 0
0 200 5 &8 251 0
0 210 241 251 254 0
0 236 2 12 204 0

0 251 7 12 218 0

Key ideas used throughout this course are the conceptgighboursand
neighbourhoodsWe shall expect a relationship between pixels which are nea
to each other, for example the pixel values may be “simildfore formally,
consider the model where pixél, 7) is aneighbourof pixel (i, j') if (i,7) is
close to(i’, j'). The simplest such case is tfhiest-orderor 4-connectecheigh-
bourhood system where the neighbours are the two horizanthtwo vertical
adjacent pixels. The next case is $econd-ordeor 8-connectedeighbour-

hood system, which contains the four diagonal pixels in @aldito the first-
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order neighbours. Higher order neighbourhoods can be debgebvious ex-
tension. Of course, we must specify special conditionsfetdges and corners
of the image.

Diagrammatically, these two systems can be represented as

So, first-order neighbours are those marleedecond-order neighbours are all
those marked or e. Thee are sometimes refered to as edge neighbours, and
theo as vertex neighbours.

We define

81(Z7j) - {(Z - 1?])? (17] - 1>7(Z?j+ 1)7(2+ 17])}
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as the first-ordeneighboursf (i, j), and

as the second-ordeeighbourf (i, j).

Further, theneighbourhoodf pixel (7, j) is denotedN (i, j), the first-order
neighbourhoodf (i, 7) is Ni(7,j) = 01 U (4,7) and the second-orderigh-
bourhoodof (7, j) is Ny(7,j) = 0o U (1, 5).

Note that, “neighbours of” does not include the pixel itsetbwever, “neigh-
bourhood” does; not surprisingly, these two ideas are afterfused.

Often we shall want to refer to the set of pixel values of thiginleours, or of
the neighbourhood, so lety; ;) = {=(k,1) | (k,1) € N(i,j)} denote the pixel

values of the neighbours of pixél, j); other definitions follow similarly.

1.2 Applications

Typically the image represents the level or intensity of e@patially varying
guantity. An obvious example is brightness, as in a blackvamte photograph,

but it could be intensity of an X-ray or ultrasound pictureaimedical investi-



gation. Also it could be a multivariate image, for examplebmess of (Red,
Green, Blue) in a colour picture or (ultra-violet, greenfraared) in satellite
images.

Often it is not the pixel values that are of interest, but &b$” in the image.
The object is typically made up of points, line segmentss agtc. Applications
are numerous and new cheap technology is extending passsbior future
exploitation of image analysis techniques.

Current applications include: Classification of land usmrfrremotely sensed
data (eg. LANDSAT, METEOSAT); Automatic reading of postesd Iden-
tification of objects (eg planes, tumours, weeds in cropageFecognition;
Number plate reading; Classification of chromosomes; Imag@ncement;

Removal of image noise.



2 SUMMARY STATISTICS

2.1 Frequency distributions and histograms

Thepixel-value frequency distributiagives the frequency of each possible grey

value in the image and is defined by

where# is the number in the set and f(x;) = rc. Theimage histogram
Is a graphical representation of this frequency distridouti Also, therelative

frequency distributioms defined by

X
p(x/{) = f(rck>7 k: = 07 17 ceey M

with > p(x;) = 1. We can think of this as an estimate of the true probability

distribution.
As with other applications, we can calculate summary stesisuch as mean

and variance.

r= riz Tc—lzf (v = 7) :rcl<zka TC:U)

k=0 k=0
Clearly other measures can be defined, such as skew andikurtos
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2.2 Histogram normalisation

Histogram normalisatioror contrast enhancememtvolves rescaling the grey
level values so that the full range of values is present inrttegye. For example,
a very low contrastimage might have grey level range 50 to R&&caling them
to the full range will result in an image that humans find easiaterpret. Note,
however, that there are no more distinct grey levels in threnadised image, but
it is easier to interpret.

Contrast enhancement can be expressed as a linear traaiform

¥ =b(x—a),

wherex’ is the transformed pixel value,= min(z) andb = m/ (max(z) — min(z)).

2.3 Histogram equalisation

Histogram equalisationnvolves applying a non-linear transformation to the
grey levels. The transformation is chosen so that the neuegalake the full

range and the histogram has an approximately uniform higtog \We replace



grey levelx by new valuer/, using:

The result of applying this transformation can be ratheapiminting when
the important information in the image is best representea llew distinct

values.

2.4 Co-occurrence

When considering the pixel-value frequency distributiomaage histogram all
information regarding the spatial arrangement of the puedlies is lost. One
way to retain some spatial information is to consider thaugalof adjacent
pixels. The imageco-occurrencgwhich is really just a bivariate frequency
distribution) gives the frequency of occurrence of eactspms pixel value pair,

and is defined as

kE=0,1,..

f(x/ﬂxl) - #{ (Zaj)7 (i,?j,> ‘ I(Z,j) - x/ﬂx(i/?j,> = T, (ilaj,) S @(Z7]) }a

[=0,1,..
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Therelative co-occurrences the relative frequency of occurrences,

1
p(ag, ;) = Nf(a:k,xl), k=0,1,...m;l=0,1,....m

where N is the total number of pixel pairs, which depends on neighhood
system and on treatment of edges and corners.
As with the frequency distribution, we can calculate vasisummary mea-

sures based on the co-occurrence, such asribggy

m m
2
E=> Y plaw)
k=0 1=0
or theentropyor information
m m
H=— Zp(x/mxl) logep(xk7xl)‘
k=0 k=0
Example
Consider the following image. First calculate the frequency distribution:
212|111
21110 x| O 1 2
1{1/0/|0 fe| 6 7 3
1/{0(0]|0 pr | 6/16 7/16 3/16
Then,

1
T= - (0x6+1x7+2x3)=13/16 (= 0.8125),
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and

1 13\?
2 _ 2 2 2 — —_ =
s EE (O X64+1"XT74+2°%x3 16><(16)> 0.5625

therefores = 0.75.
We shall now calculate the co-occurrance matrix using arsgcvder neighbourhood. For
example,

¢(2,2) = {(1,1), (1,2); (1, 1), (2, 1); (1,2), (1, 1); (1,2), (2, 1); (2, 1), (1, 1); (2, 1), (2, )}
=6

and hence the relative co-occurrencé,i84.

The frequency matrix: and relative co-occurrence matrix:
20 11 0 0.24 0.13 0
11 22 7 0.13 0.27 0.08
0 7 6 0 0.08 0.07

The resulting energy i& = 0.182 and entropyH = 1.82.
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3 Thresholding

3.1 Introduction

Thresholdings an operation which transforms a grey-level image intonafyi
image by converting all pixels greater than a particulaueal, to “White” and

all those less than or equal to the value to “Black” (or viceseg.
(

1 if z(i, j) is greater that the threshold (i, j) > ¢,
(i, 5) = 4

0 otherwise x(i,7) <t
\
wherez’ is the binary output. Of course the thresholthn be chosen manually,
perhaps by trial and error, but an automatic procedure iep@ble.
A common use of thresholding is to distinguish an object friove back-

ground. If the object has generally higher pixel values ttta background

then it will be shown as “White” on “Black”, otherwise as “Bl&’ on “White”.

3.2 Notation and definitions

Let D represent the set of pixels in the “Dark” class andhe “Bright” class.

Denote the probability function of each classagz) and7p(z). A given
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image will be composed of bright and dark pixels and so theadMgixel value

distribution is a mixture of these

n(x) = Pr(X(i,j) =x) = Pr(X(i,j) = x,(i,5) € B) + Pr(X(i,j) = x,(i,5) € D)
= Pr(X(i,j) = «|(i,5) € B)Pr((i,5) € B) + Pr(X(i,j) = #|(i,7) € D)Pr((i,j) € D)

= mp(x)np + mp(x)7Tp

whererg (7p) is the (prior) probability of a randomly chosen pixel beifingm
the Bright (Dark) class, andg(z) (7p(x)) the likelihood of a pixel value:
given it is from the Bright (Dark) class.

To illustrate this consider the following pixel value dibtrtion. The dotted
curve on the left describes the pixel distribution of the Ibgixels (r(x, D) =
7p(x)mp) and on the right, of the Bright pixels (x, B) = mp(x)7g). The solid
line gives the combined distributior(z). In this example:p = 1.7, 07, = 0.9,
pp =6,0% =1.5andrp = 0.6.

Now, with threshold, the probability of incorrectly labelling a pixel is given
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0.10 0.15 0.20 0.25

0.05

0.0

L=Pr(X(i,j) <t (i,j) € B) + Pr(X(i,j) > t,(i,j) € D)
= Pr(X(i,j) < t|(i,j) € B)rg + Pr(X(i,§) > t|(i, j) € D)mp
= FB(t)ﬂ'B -+ (1 — FD(t))ﬂ'D.

UnfortunatelyF'z, Fp, g andxp are not usually known, so minimisation of
this is not possible. (See Homework for an example wheresthes assumed
known.)

The image histogram, however, is known. In practice ingpeaif the his-

togram is not totally cut-and-dry for making the choice oftable threshold
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We shall now consider methods for automatically choosirgttireshold

value.

3.3 Minimizing within-group variance

If we suppose that the two classes can be seperated exaicityamsne choice
of threshold, then we can approximate the probability fiomcof the “Dark”
pixels by

Pr(X(i,j) == X(i,j) <1)

p(z) ~ Pr(X(i,j) = 2| X (i,j) < t) = Pr(X(i,j) < t)

w(x)/F(t), x <t

0 x>t

and hence estimate it by using sample values:

pp(x) = for x < t,

whereF,(t) = 3! _ p(z) is the sample cumulative distribution function. The

probability function of the “Bright” pixels is similarly ésnated by

forz > t.



Of course in practice the two distributions will overlap, smme of those des-
ignated “Dark” will in fact be “Bright” and vice versa.

Now the sample variance of the “Dark” pixels can be estimated

sh(t) =) (z = zp(1))’ pp(z)

=0
t
wherezp(t) = Zx pp(z) is the mean of the “Dark” pixels. Similarly, the
=0

variance of the “Bright” pixels is

wherezp(t) = Y  pp(x).
r=t+1
Note that we are effectively dividing the variance sumrbyather than the

usualn — 1; in practicen is so large that the difference does not matter.

Since, in practice, we do not knaimne approach is to choos#& minimise

siy(t) = Fa(t)sp(t) + (1 — Fu(t))sp(t)
which is the within group variance. The minimisation cangaed by evaluat-

ing this for allt.
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A faster method is to note that the total variance (which da#siepend on
t) can be written as a sum of the within group variance and tinvd®n group
variances® = s¥,(t) + s%(t) (compare this with ANOVA). Since the total
variance is fixed, we can therefore equivalently maximiselibtween group

variance, that is
spa(t) = Fa(t)(@p(t) — 2)° + (1 — Fu(t))(@5(t) — 7)™
This is equivalent to maximising
spe(t) = Fu(t)(1 = Fu(t)(zp(t) — 25(t))?

sincez = F,(t)Zp + (1 — F,(t))Zp.

3.4 Minimising Kullback-Leibler Divergence

Let f(z) be the probability function of a modé&r the grey level distribution.

The Kullback-Leibler divergencel, is measured by

m m m

J=> pla)log{p(x)/f(x)} = p(z)logp(x) = Y p(z)log f(x).

x=0 =0 =0

Note that/ > 0 (Exercise) and/ = 0 if and only if p(z) = f(z) for all

x. We want to choose to minimize J, however, we need only minimize the
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informationmeasure

Sincem is usually large (typicallyn = 255) the probability distribution of
the grey levels can be approximated by a continuous diskoibu\We assume
that the grey levels come from a mixture of normal distribo§ N (up, 0%),
N(up,0%) with mixing proportionstp andwpz = 1 — 7p. The probability
density function of a mixture of normal distributions is

1 _ilemup)? 1 _1G-np)®
f(x) =Tp \/2726 > 9D +7B \/2726 * g -0 < r < Q.

If the modes are well separated then, approximately

and H then simplifies to

1+ log?2 1
H~ w — mplogmp —WBlogWB+§(7TD10g0123+7TBIOg‘7%)'
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If the parameters.p, op, g ando g are known this is fairly straightforward,
butin practice they must be estimated to give an automatioguiure. Under the
assumption that the modes are well separated, we(0ge. . ., p(t) to estimate

0%, up andrp, andp(t + 1), ..., p(m) to estimater g, ;15 andrp.

4 NUMERIC FILTERS

4.1 Definitions

We first revisit the ideas of neighbours and neighbourhoatksys, in this sec-
tion we shall require further notation.

Defined; (i, j) as the first-ordemeighbourf (i, j), ando,(z, j), the second-
orderneighbourf (i, j). Further, theneighbourhooaf pixel (i, 7) is denoted
N (i, 5), the first-ordemeighbourhoodf (i, j) is Ny(i,j) = 0y U (i, j) and the
second-ordeneighbourhoodf (i, j) is No(i,7) = 02 U (4, 7).

Note that, “neighbours of” does not include the pixel itsetbwever, “neigh-
bourhood” does; not surprisingly, these two ideas are afteriused.

Often we shall want to refer to the set of pixel values of thignleours, or
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the neighbourhood, so lety(; ;) = {z(i,j) | (4,7) € N(i,j)} denote the pixel
values in the neighbourhood of pixgl j); other definitions follow similarly.

A neighbourhood operatoor filter is a, usually simple, operation which is
applied to all neighbourhoods of an imadeumeric filtersare neighbourhood
operators which are arithmetic functions of the pixel valuguch as addition,
averages, maxima, etc.

If  denotes the input image and the output image, then the form of a

general neighbourhood operator is:
:z:'(z',j) = ¢ (&N(z‘,j)) .

The size of the filter is usually odd, say 3, 5 or 7, and hencadghbourhood
has 9, 25 or 49 elements.
Most commonly used numeric filters are examples ofgaeeral linear fil-

ter,

i) = Y, wi—i,i—5) ().

(") EN (i.5)

The following are a typical set of weights for a second-orteghbourhood,
that is a filter of size 3,
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1121
2 x1/16
1121

N
N

Note that in this case all weights are positive gnd_ w(k, ) = 1.

4.2 Mean filters

A mean filtens the mean of the pixel values in the neighbourhood. Thelgstp
case is aimple averagef the pixels, this is also known as thex filter. Alter-

natively, we can use a general weighted average of the neighbod pixels

)= > w(i—ij— ) ), Y w=L

(i',3") €N (i.j)
Examples
A 3x3 box filter: A 3x3 weighted mean filter:
1111 0[1]0
1011 x1/9 1141 x 18
1171 o 01110 : :
Note that these definitions apply for “interior” pixels ongpecial treatment is

needed at edges and corners.
Applications: The most common use of the mean filter is to namise in an

Image, however this is achieved at the expendduwting edges.
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4.3 Median filter

Themedian filteris the median of the values of the pixels in the neighbourhood

2'(i,7) = median (gN(Z-J-)) .

Applications: This filter also smooths out noise, but doetsbhar the edges to

the same extent as the mean filters, see Figure 2.1.

Examples

Consider the following input image

4 5 5 7
5 2 2 1
2 311
5 4 31

1) A 3x3 box filter with weights:

1 11
1 11 %
1 11

Consider the output for pixels labelled A, B and C:

B|C 40(3.2(3.0|28
A 3.5/28|26|22
35/29|19|13
3513.0|22|15

23



1x44+1x5+1x%x5

5)
A=1 41x5+1x241x2 |g=74 (=28
+1x2+1x3+1x1
1x44+1x5 1 1
B = - = ZG =4.0
+1x5+1x2
1x44+1x54+1x5 1 19
+1IX54+1x24+1x2
2) A 3x3 weighted average with weights:
1 21
2 8 2 %
1 21
Consider the output for pixels labelled A, B and C:
B|C 4213928438
A 40(26(18|1.8
30/28|16|1.1
421362513
1x442x54+1x5
1 53
A= — = — 2.
+2x54+8x2+2x2 [55= 55 (®26)

+1x24+2x3+1x1
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8X4+4+2x5H 1 54

— = ~ 4.2
13 13 ( )

+2x5+1x2

2X44+8x5H5+2x%x5 1 62

¢= 616

(~3.9)
+1Xx54+2x2+1x2

3) A 3x3 median filter. Consider the output for pixels labélk, B and C:

B | C 4513.0/20|15
A 351202010
351301010
351302010

A = median{4,5,2,5,2,1,2,3,1} = 2,
B = median{4,5,5,2} = 4.5 and

C = median{4,5,2,5,2,1} = 3.

4.4 Quadratic filter

If we assume that over a (smath) x n neighbourhood the image can be mod-

elled by a quadratic surface

f(i,7) = a1 + asi + agj + asyi + asij + agj> + €(i,7)
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then we can fita,, ..., ag by least squares. This results in a linear filter with

weights

1 (1 . 5/4(m? — 1) — 15k? . 5/4(n?—1) — 15l2>

kD) = —
w(k, ) mn m2 —4 n2—4

fork=—(m-1)/2,....,(m—1)/2andl = —(n—1)/2,...,(n—1)/2. For a
3x3 neighbourhood this gives the weights:

Applications: Again, a smoothing filter.
This filter can be applied, then subtracted from the origimalge to give an
estimate of the noise. We can then apply diagnostic testsegetresiduals in a

similar manner to usual regression analysis.

4.5 Laplacian filter

TheLaplacian filteris a weighted mean filter, with special weighjs (v = 0),

for a 3x3 neighbourhood these take the following form.
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[ER
1
N
[ER
=
1
[o0]

or 1 x1/3

The Laplacian of a 2d surfacé, is defined by

0? 0? o*f  O*f
2 - - —_ - -
Vi = ( + 052 ) f= 012 i 092

If the values in a neighbourhood @f j) can be modelled by a quadratic surface
of the form

f(i,5) = a1 + asi + asj + asi® + asij + agj”
then the neighbourhood looks like

ay —ag —ag+aqs+as+ag | ap —az+ag | ap —ax+ag+ag —as + ag

a; — az + ag ay a; + a3+ ag

a1 +ay —as+ag —as+ag | ay+as+ayg | ay +as+ as+ ag + as + ag

andv?f = 2a4 + 2a¢, and this is also produced by either of the above filters.
So these filters produce a value which depends on the secordtie. Its
effect is to return O when the image is flat or linear, and nereavhen a jump

Is present, hence, the filter is essentially edge detector There are many
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other filters for edge detection, including the Roberts’ p& and the Sobel

Operator.

4.6 Template matching

This is another special case of the general weighted avenageric filter, with

weights chosen to match the application.

For example, if we wish to find the let- 1101
ter “H” in an image (perhaps of a post- 11111
code or car registration plate) weights
with an “H” pattern are used, this set
of weights is called theemplate

High values in the filtered output image indicate possibteatmns of the
template. Of course the template could be more complicatedicould be part
of a grey-level image. A major drawback is that seperate tatep may be need

for different magnifications and rotations.
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5 MORPHOLOGICAL OPERATORS

Symbolic filtersare operators which are defined in terms of Boolean or logical
operation, such as AND, OR or NOT.

Morphological operatorsare a special type of symbolic filter which gener-
ally extract information orshape that is properties of objects after translation,

scale and rotation have been taken into account.

5.1 Region-growing filter

Suppose that the image is composed of labelled regions sseda Let the set
of labels be denotedl = {1,2, ..., k}, hencer € L™ wheren is the number of
pixels. We can grow region say ¢ € L) by using the simple symbolic filter

which gives

C if # (Q}'a(i’j) N C) >0
(i, j) =
x(i,7) otherwise
That is we change the label taf any of the neighbours have label

A more sophisticated version can grow a region only if a majaf neighbours
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take the same label, that is

4

C if # (335)(2'7]') N C) > # (Q}'a(i’j) N C/)

2'(i,5) = 4

\ x(i,j) otherwise

For binary images

For a binary imagex(i, j) = 0 or 1), the first of these region-growing filters is
just

2'(i,7) = max{zy; ;) }

and a region-shrinking filter is given by
2'(i, ) = min{wa( ) }-

5.2 Binary dilation

This is a transformation, calledinkowski additionwhich combines two sets
using vector addition of set elements. Afand B are subsets of? (the d-
dimensional regular lattice) with (vector) elementandb, then thedilation of

A by B is the set of all vector sums of pairs of elements; one frbrand the
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other fromB, that is the dilation ofA by B is

A@ B={c|c=a+bforsomea € Aandb € B}

wherel? denotes thé-dimensional lattice with integer labels. Note that since
vector addition is symmetric so is dilation, henéeb B = B & A.

In practiceA is associated with the image aitlis refered to as thetruc-
turing element For example, with structuring elemet = {(i,j) | i =
—1,0,1;j = —1,0, 1} we get the region-growing operator introduced earlier.

Translation operator

Let A be a subset of? (A c I?) andt a pointinI? (¢t € I?). We denote the

translationof A by the pointt by A;, with

Ay ={c|c=a+tforsomea € A}.

Then dilation is just the union of translations,

A® B =UueaB, = UpepAyp.
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Set identities

Having introduced the new set operat@r,we can consider various set results,

proof of the following are left as exercises.

e (A B)a(C=Ad(Ba (),

[ ] A@Bt:(A@B)t,

e ( BUC)®A=(B®A)U(CaA),

¢« AG(BUC)=(A® B)U(A® Q).

Also, if A C B,thenA® K C B® K, sodilation is anncreasingoperator.

5.3 Binary erosion

This is the dual or complement of dilation. Afand B are sets, then the erosion
of A by B is the set of elements for whichx + b € A for everyb € B, thatis

the erosion ofd by B is defined by

Ao B={x|x+be Aforeveryb € B}.
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An alternative representation is
Ao B={z|B, C A}.

Thus B may be visualised as a probe that slides across the imatgsting the
spatial nature ofd at every point, wherés translated byr can be contained in
A (by placing the origin ofB atz), thenxz belongs to the erosioA © B.

A further representation is
AO B = MyepAy

that is an intersection of negative translations.

Erosion-Dilation Relation

Recall DeMorgan’s Law, thatd U B)¢ = AN B¢, the corresponding rule for
erosion and dilation is

(Ae B =A@B

whereB is thereflectionof B defined by

B = {x| forsomeb € B,z = —b}.
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Proof

re (Ao B)ifandonlyifx ¢ Ao B.

r ¢ Ao Bifand only if there exist$ € B such that: + b ¢ A.

There existd € B such thatr + b € A€ if and only if there exist$ € B such
thatx € (A°)_y.

There exist$ € B such that: € (A°)_ if and only if x € Upep(A°)_y.

Now = € Upep(A°)_p ifand only if z € U, ;5(A%),: andz € U, ;5(A°), if and

onlyif z € A°@® B.

Corollary (A ® B)° = A°© B. (Exercise)

Example 1 - Binary dilation

If A={(0,1),(1,1),(21),(2,2), (3,0} andB = {(0,0), (0,1)}, then findA & B.

A S B = A®B
[ ] [ ] [ J [ J [ J
[ ] [ ] [ J
[ ] [ J [ ] [ J [ ]
[ ] [ ] [ ]

Example 2 - Translation operator

a) If A = {(0,0), (1,0),(2,0), (2,1)} andt = {(1,2)}, then findA,.
A ' A,
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b) If A = {(0,0), (1,0),(2,0), (2, 1)} andB = {(0,0), (0, 1), (1,2)}, then findUyc s Ay.

A B UeAp
° o | o o | o
° ° oo e
o | o oo e
o | o

Example 3 - Set identities

If A ={(0,0),(1,0),(2,0),(2,1)}, B ={(0,0),(0,1)} andC = {(1,1)}, then illustrate the
identity(A® B) o C =A® (BoC).

A B A® B C (AeB)&C
[ ] [ ] [ ] [ ] [
[ ] [ J [ [ J [ [ ]
[ ] [ ] [ J [ [ [ ] [ ]
[ ] [ ] [
A B C BacC A® (B&0)
[ ] [ ] [ ]
[ ] [ ] [ [ [ ] [ ]
[ ] [ ] [ J [ ]
[ ] [ ] [ ]

Example 4 - Binary erosion

If A={(0,2),(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(3,1), (4,1), (5,1)}andB = {(0,0), (0, 1)},
then findA © B.
A B Ae B
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Example 5 - Dilation-Translation

For A and B as above, findd ), A_«,1) and henced o N A_,1) and compare this with
A6 B.

Ao A1) A0 N A
[ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [} [} [} [ ]
[ ] [}
[ ] [}
[ ] [}

Example 6 - Erosion-Dilation Relation

A B Ae B
+ ° +
o o |0 | @
L)
e | o ) o |0
e | +
o | o | o | o |0 o
o e
) oo | o ° °
o | o0 |0
A° B A°® B

36



[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
+ | e

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

5.4 Binary opening and closing

The openingof image A by structuring elemenk’ is denotedA o K and is
defined by

Ao K=(AcK)® K

that is erosion followed by dilation. The opening charastdion theorem
states that

Ao K ={x| forsomet € Ao K,z € K;}

that is

Ao K = Upeacr K.

So the points iM o K are precisely those obtained by sweeping the structuring

element over the inside of, never permitting any point of the structuring ele-
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ment to be outsidel. The set of all points covered by the sweep is the opening

of Aby K.

Applications: The opening of an image by a small disk structuring element

smooths the perimeter of an object and eliminates smadrigs”.

Theclosingof A by K is denotedd e K" and defined by

Ae K =(Ad K)o K

that is dilation followed by erosion.

Applications:  If the image contains an ideal object, corrupted by noise so
that holes are created inside the object, then it can be stimtithe ideal object
can be recovered without error by the closing of the obsenviedje, B, with a

carefully chosen structuring elemeiif, that isB ¢ K = A.

5.5 Grey-scale Morphology

The binary operations considered so far are readily exbtalgrey-scale im-

ages, however, we start with some basic definitions.
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Let A be a subset of? and F' = {z|z € 1" ',y € I, (z,y) € A}, for
example im = 2, A = {(0,2),(1,2),(1,3),(2,1),(2,2)}, thenF = {0, 1, 2}
(or F = {1,2,3}). Ind = 3 consider a rectangular box and F’ its projection
on to a two dimensional plane.

in general, we can definé in n ways, each time projecting onto a different
axis. In image analysis, however, only one such projectidhmake sense,

more later.

Top and Umbra

Thetop or top surfaceof A is defined as

T(A) ={z]z = max{y | (z,y) € A},x € F}.

Theumbraof f (any integer-valued function defined on some suliSeif
I"!is a set consisting of the surfagexnd everything below the surface, which

Is defined by

U(f)={(z,y)ly < flzx),r € Fy € I}.
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Example

Umbra Top

The setf denotedx, and its umbral/( f), denotec.

The grey-scale dilation of by structuring element is defined by

fok=TU()oUk)}

and the grey-scale erosion oy £ by

fok=TU(f)oUK)}.

The grey-scal®epeningof f by structuring element is defined by

BoK=(BoK)®d K

and the grey-scalelosingof f by K by

BeK=(B®&K)c K.
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The grey-scale opening gfby k& can be visualised by slidinfgunderf. The
set of all the highest points reached by some pattisfthe opening.

Closing can be thought of by sliding the reflectionkobver the top off.
The set of all the lowest points reached by some patktisfthe closing off by

k.

A function and its umbra

f U(f)
[ [

[ ] [ J [ ] [ ] [ J [ [ ]

[ J [ [ [}

[ [ J [ [ J [} [ [ [}

[ [ ] [} [ [ [}

[} [ J [ [} [} [ [ [ ]

[ J [ [} [} [ [ [ J

A small structuring element and its umbra
(origin at bottom left of structuring element)
k U(k)
[ J [
[ [ ] [ J [ [
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Grey-scale dilation

J@®k

TU(f) @ U(k))

U(f) @ U(k)

Grey-scale erosion

TU(f)eUk)=rfok

U(f) o U(k)
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6 IMAGE MODELS AND ESTIMATION

6.1 Introduction

In this chapter we shall, for ease of notation, label thelpiXe2, . .., n where
n = r X ¢, and denote a pixel valug for pixel i, sox = {x1, z,...,z,}. Each
pixel variable can be discrete or continuous. We refer topibesible values of
the pixel variable as intensities. An arbitrary shadind s denoted by.

We need a probabilty model or distribution over the possthle signals
which reflects our (prior) ideas of the scene. For computaiioeasons it is
highly desirable to have a local description of the probghmodel, this can be
achieved using models defined in terms of Markov random fwhish are 2-d

models closely related to Markov chains.

6.2 Markov random fields (MRF)

If we want to model images, we need a random process defingdsiaver a
single variable, time, but over 2-dimensional space, #agl$ to the idea of a

Markov random fieldWhen considering space, there is no obvious ordering of
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the axes, unlike time, so we replace the idea ofrdeent pasby neighbours
anddistant pasby not neighbours

A Markov random fields a joint probability distribution with probability
function (or p.d.f. if continuousy(z), on the set of all possible shadingsaof

which satisfies the Markov property,

that is the conditional distribution af, depends only on the values of the neigh-
bouring pixels.

Although it is possible to construct Mrfs from first prinogd, it is tricky to
check that the model is valid. A more usual approach is to sé@oparticular
form of the Gibbs distribution. It can be proven that evenyf Borresponds to a

unique Gibbs distribution, and vice versa.

Gibbs distributions

A Gibbs distributions defined as

exp {—Bzzqﬁ(% - xj)} = Z(l 5y =P (A (@)}
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where the sum is over all pairs of neighbouring pix&$z) is known as the en-
ergy, andy as the potential. This terminology indicates the origingh¢ef model
as coming from statistical physics. In most cases the nasimglconstant (3)
IS intractable.

The parametef controls the variation between neighbouring pixel values.
Note thats T oo implies constant:, and smallg correspondingly small spa-
tially structured variation, only ag | 0 does the variation become spatially
unstructured.

An alternative specification is in terms of the local corahtl distributions

1
W(xi|£8(i)):Z(ﬁ exXp 5Z¢ T — T;j)
JEI(i)

whereZ*(3) is not the same ag ().
The most widely used Gibbs distribution has a quadraticrgite((u) =
u?) and hence is a multivariate Normal distributiofy)z, ;) ~ N (Zy, (46)7")

for a first-order neighbourhood.
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Strauss model (or Potts model)

This is a model for unordered categories, such as labels oapa fere, the
energy is the number of pairs of neighbouring pixels withsoislar labels.
Thus the most probably maps are all of one label, and the peabable ones
(for 4-neighbours) are patchwork quilts like a chess-bddrd > 0). This is

Markov since

P (X; = x| rest of X's) o exp [5# (neighbours of labet)] .

Ising model

This is a special case of the Strauss distribution with owy tategories and
o(u) = 1if u=+£1; 0if u = 0, hence the local conditional probability function
IS

- B exp{—0#{z; |z, =1—x,j € 0(i)}
m (=] zy) = expl{—B#{z; |z, =0,j € <9j(z')}j+ expi—F#{z;|z; = 1,7 € 0(i)}
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wherex = 0, 1. For this simple model we can write down the joint probapilit

function

1
Z(P)

though the form otZ(3) is very complicated.

T (x) =

exp {—(+#{ discordant pairg }

Example (4 neighbour Ising model). This is the Strauss model withydhl

possible labels and a 4-neighbour graph. In this case

xT
P (x;; = x| neighbourg = ot r=0,1 (1)
whereT" = 23 Zz"j' neighbourin’,j’ —4p.
We can write this as

: e~ P

P (X;; = 1|neighbour$ = g T
: e~ Fm

P (X;; = O|neighbour$ = e Trp—. T

where ny = # neighbours of pixel with value O

n1 = # neighbours of pixel with value 1.
(A pixel is not considered a neighbour of itself).

If 3 > 0 pixels will tend to be more like neighbours

6 < 0 pixels will tend to be less like neighbours (chessboardttgjpo
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The joint distribution ofX is

1 . . .
P(X11 =211, X1o =719, ..., Xpe = Tpe) = 7 exp (—0 (# discordant pairs of neighbouys)
whereZ is a very complicated constant to ensreP (X) = 1.

Proof that the Ising Model satisfies the Markov property

Denote{ X;,, = x;, (I, m) # (i, 7)} as “rest” for all pixels# (i, j).

P(X;; =1nN rest)
P (rest)

P (X;; = 1| rest) =
and

P(resy = P (X;;=1nN rest)+ P (X;; =00N rest)

1

= exp (=B (no+d)) + %exp (=6 (n1 +d))

whered = # of discordant pairs of neighbours not involvifg j).Hence,

le_ﬁ(no‘i‘d) e_ﬁno
P(X;; = 1| rest) = Z _ _
J %e_ﬂ(n()‘i‘d) + %e—ﬁ(nl—Fd) e—ﬁno + e—ﬁnl
Also, P(X;; = 0| rest) = 1 — P(X;; = 1| rest) = % So the condi-

tional distribution ofX;; given the rest only depends on the neighbour&'gf
i.e.

P (X;; = x;j| rest) = P (X;; = z;;| neighbours
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So the Markov Property is satisfied.
The Ising model has a critical value 6f,;; = sinh~'1 ~ .88 such that, as
rc — oo, for 6 < (.. there are no infinite patches of one colour, whereas, for

6 > B there will always be such infinite patches.

Auto-models

Another class of model can be defined by specifying the tha fafrthe condi-
tional distribution. For example suppose that the condélalistribution ofX;

has a binomial distribution with index parameteand probabilityr;, which is
dependent on the values of the neighbours; the conditianalpbility is then

C;

exp{a+ b)Y z,}
1+exp{a+bd a;}

p(wilzyey) = (

x) w0 (1—m)“" x;=0,1,...,¢; wherem; =
1

The resultant joint probability distributiors(x), is auto-binomial The Ising
model is a special case of the auto-binomial with index patana; = 1 and
constraints = —2b.

Clearly, other auto models can be defined simply by spedgfyire form

of the conditional distribution: auto-Poisson; = exp{a+b)_ x;}, auto-
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normal, u; = a + b)Y x;. The relationships between model parameter and
function of neighbours« + b z;) is clear when these models are written in
regular exponential family form. It can be shown that b > x; must be equal

to the natural parameter of the distribution.

Isotropy versus Anisotropy

We can further generalise by allowing different parameterslifferent direc-
tions, that is replacé (or 5) by b(1, 1) andb(1, 2) for the horizontal and vertical
neighbours, and(2, 1) andb(2,2) for the diagonal neighbours. If there is a
commonb parameter, the model isotropic (same in all directions) otherwise

it is anisotropic

6.3 Simulation of MRFs

From the definitions alone it is rather difficult to get a fea the properties of
these models. One way is to simulate samples from the disimiband study
properties of the samples. Standard methods of simulaliowever, are not
appropriate due to the very high dimension of the sampleesdac a binary
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image withr = ¢ = 256 there are more thah0'*?*!4" elements in the sample
space (i.e. huge!). When the model is a Gibbs distributian¢can use the Gibbs
Sampler (introduced in 1984 by Geman and Geman).

The Gibbs Sampler is a simple iterative algorithm which ek a Markov
chain with the required distribution as its limiting or ebjoiium distribution.
The algorithm is started from an arbitrary starting positithen after an ini-
tial transient period subsequent values are collectedsd healisations of the
Markov chain form gpseudesample from the required distribution and can be
used to estimate various statistical measures of the images

At each iteration, only one pixel changes in value: the sege@ which the
pixels are visitied is arbitrary, but it is usual to visit then the labelled order.

The sampling algorithm is defined as follows:
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e Pick an arbitrary starting vectar! = (29, 29, ..., 29).

e Simulate a new value for each pixel from the following coradhial distri-

butions:

w1 from 7r(z]29, 29, ..., 20)
zd from 7(zo|zt, 29, ..., 20)

1 11 1.0 0
x; fromm(x;|e), 5, ..., 2, T, -0 )

xl from w(x, |21, 23, ... 2k )

This completes the transition fromY to z'.

e For thet!” iterative sweep obtain a new intensity for pixddy simulating

t+1 i H H H t+1 t+1 t+1 t t
z; " from the conditional distributiony (z; |27, x5, ..., 2,71, Zi 4, ..., T,).-

After an initial transient period all subsequent sweepsg gaalisations from
the required probability distribution. It is important toomitor convergence to
the equilibrium distribution and discard the realisatiaidained before equi-

librium is reached. This is often achieved using various isiany statistics of
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the evolving chain. Also, we must determine a suitable sarsik; this can be
achieved by making modifications to the usual approach tpkasize calcula-

tions to make allowances for the correlation between sampi@bers.

6.4 Parameter Estimation

Suppose that we have a single observation from the autovbaonodel, then
how can we make inferences about parametensdb. The obvious suggestion
is to use maximum likelihood, that is maximise the joint pblbity 7(z|a, b)
of the data given the parameters. We have noted, howevéeth#gaormalising
constant in this distribution can not be easily evaluedwsitlo know the local
conditional distributionsz(z;|zy, , a,b). If the z; were independent then the
joint distribution would be given by the product of the lochstribution, but
in image applications they are not independent. Insteadanaise conditional
likelihood procedures based on the coding method due tod3d$€42, 1974).
Suppose we wish to consider a Markov random field with a firdepneigh-

bourhood system. We start by labelling the sites widmd x alternatively.

53



X e X e X e X e

Coding pattern for a first-order neighbourhood.

Now the variables associated with the sitegiven the observed values of
the other sites are mutually independent. Hence, the dondltlikelihood,
[ of the pixels in one coding set given the values of the pixelthe second
coding set can be obtained as the product of the conditiasiilaitions of the

corresponding pixels,

L= w(ailzy)

the product is over the pixels in a coding set and the logihked,

L=Y" log{m(z(i,j)|rs)}

where the sum is over pixels in the coding set. For the autorhial this be-
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comes

L=% ( log <;> +ailogm — (¢ — ;) log(1 — m-))

where, for a first-order anisotropic schemejs given by

o exp{a + by(u+u') + bo(v + ')}
" 14 expla+bi(u+u) + by(v+ )}

whereu andu’ are the horizontal neighbours, andand«’ the vertical neigh-

bours. The resulting normal equations are,

ZSBZ' = ZCﬁ'Z
Zazi(u+u') = Z(u—klﬂ)c T
in(v%—v') = Z(v+v')c T

where
exp {d + bi(u+ ) + bo(v + v’)}

~

T, =

1+ exp {d+ bi(u+ ') + by(v +v’)}.

Clearly there are similar equation for other neighbourheodemes, such as

first-order isotropic.
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6.5 Bayesian Image Analysis: segmentation and posterior@mation

The simplest type of segmentation is thresholding whiaobcalles a pixe(:, )
to classAy if z;; € [ty,tp41) Wherety, ts, ... 1,41 are threshold levels. This
approach has been discusse@idnltis based on a pixel-by-pixel consideration,
whereby observations; ; are considered independently. We can achieve better
results by using the fact that neighbouring pixel will ofteave similar grey
levels, and will generally belong to the same class. In o@eroceed we need
to formulate statistical models for images.

Suppose we do not observe the true image, instead we obssayeyj which
Is adegradedversion ofz. This degradation typically includddur andnoise
which may be due to the equipment used to detect and recoruintuge, or
physical properties of the process being imaged such aeaeciiie decay in
medical imaging.

The most commonly used model is
Y, = Z hi,j xj + €;
JEN(i)
whereh is a numeric filter (as in chapter 3) amdare independent additive
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Normal noiseg; ~ N(0,0?). A more compact formulation is in matrix terms
y=Hzx+e

Possible estimators are the direct inveranlg and the least-squares solu-
tion (H" H)"'H"y. These solutions, however, are rarely acceptable becduse o
numerical difficulties caused by ill-conditioning. Brieflyigh-frequency com-
ponents in the truth are smoothed away by the blur function,irb practice
almost certainly exist in the observed image because otndifiese compo-
nents are then grossly magnified by the inversion proceadirg to a estimate
which may consist largely of random noise.

The following approach to image analysis has been propdsedpme for
totally pragmatic reasons and by others for philosophieatons. This is often
calledBayesian image analysand was first proposed in 1984 by Geman and
Geman, and by Besag. Instead of basing estimation on tHanbkel function,
we consider thgosterior distributionwhich incorporates additional (prior) in-
formation.

Suppose that we have some idea of the nature of the true saedesan
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quantify this knowledge as a probability distributior;z) say. Assuming that
we also know the form of the noise, which definesltkelihood, /(y|x), we can

use Bayes’ rule to give

m(zly) = ylz)m(z) /7 (y).

We callw(z) theprior distributionandr(z|y) the posterior distribution

The direct analogy of the maximum likelihood principle isxmaum a pos-
teriori (MAP), that is the value af which maximises the posterior probability
(or density); we could also use the posterior mean, thatasrban of the pos-
terior distribution.

To define the likelihood we need to consider two componetis and noise.
In some applications the blur function is very complex, fcample in the medi-
cal imaging technique of emission tomography. However,amyrcases instead
of using the exact function an approximation will be usea@hsas a normal dis-
tribution, which will capture the gross properties of thaiblFor example using

a (bivariate) normal blur

h 1 1
) 2770,% p 20%

(z‘2+j2>}.
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One way to visualise blurring, is to consider a single poihlight. Without
blurring we would see this as a single point, however therlsigrmeans that
we see it as a “disk” which is brightest in the middle. For anpsource of unit
intensity, the blur or point-spread function gives the ated brightness around
the point. Also, as the variance increases, the peak begbtdecreases and the
size of the disk increases.

The most commonly used noise models are Normal, e.g. toibdestrea-
surement errors, and Poisson, e.g. for radioactive decmeutical imaging:

e Normal: Y|z ~ N(Hz, o*I) with likelihood

Whereuj = Z hz’,j x;

As discussed earlier we shall base estimation on the postdistribution,
that is by considering both prior information and evidenaf the data. An
obvious approach is to look for the value .ofwhich maximises the posterior

probability, the image which is most likely given the datal aur prior belief.
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Recall, however, that a typical image might be 1024 pixeld 084 pixels, so
we shall be attempting to estimate over 1 million parametexsce it is unlikely
that standard optimisation algorithms (such as quasi-biewt conjugate gra-
dient procedures) will work well. Instead we could adopt agedure similar
to the simulation-based Gibbs sampler discussed in thequ&gection, called
the Metropolis-Hastings algorithm(In fact for some examples where the pos-
terior conditional distribution comes from a standard figrntine Gibbs sampler
can be used.) Although standard maximisation approackasiikely to work,
other procedures for finding the MAP estimate are availadnke, such method

Is calledsimulated annealing

6.6 Segmentation via Simulated Annealing

The challenge in the MAP problem is that there @fepossible image segmen-
tations ¢ classes possible for each pixel andpixels). So for a256 x 256
image, and only 2 classes, there are oM@r?*!*Y possible solutions. A pro-
posed optimization technique is simulated annealing, lwli@ simple idea.

Let P denote a probability distribution over a finite seét We want to choose
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r* € X to maximizeP (x). Suppose we consider

Py(x)=P(2)" /Y Py’

yekX
Then, as\ — oo the distributionP, increasingly concentrates arj, i.e.
1 ifz=2x"

lim Py () =

A—00

0 otherwise.

So, if we simulate fromP, (z) with X large then we hope that, is close tar*.

Example.
P(1) =p
PO) = 1-p
1—p)* A
p*+ (1 —p) p*+ (1 —p)
A
1-p
. (1-p)* (7> -
lim P, (0) = 1 = =0ifl—-—p<
A—00 /\() /\—>oop)\_+_(1_p)/\ /\—>oo1 1-p A p p
p
:A1Lr£1o TV =1ifl—p>p
(2) +1
270 1.
:F:§pr:1—p=1/2 etc



Now suppose’ « exp (—(u) is a Gibbs probability distribution. ThuB),
corresponds to replacing by SA. Since in statistical physic8 is inversely
proportional to temperature, it is usual now to write= 1/7 and speak of a
decreasing temperature @0

We now want to sample from®,, but there is no way to enumerate the entire
sample spac&’, so we cannot use conventional methods. A commonly used
method is an iterative one, known as the Metropolis algoritid he following

sections are for the Ising Model, but can be generalised.

6.7 Metropolis Algorithm

Let X be{X;,j=1,...4"°}, the set of all possible image segmentations, and
let 7 = (7;) be a non-constant distribution ovat. If we can find a transition
matrix P = [F;;] (whereP;; denotes the one step transition probability from

to z;) such that

7'('2']92']' = 7ijji ) 7é j
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then ther = (7;) is an equilibrium distribution of, i.e. the probability that
the system is in stat&’; at a particular time point a long way from the time
origin, this being unaffected by the initial state.
An irreducible Markov chain is one in which all states inter-communicate.
Chooseany symmetric irreducible transition matri§® = [¢;;]. When in
stateX; select a new statg from thei’* row of (). Make the transition with
probabilitymin (1, 7;/7;), otherwise stay ak;.

This definesP as

pij = @ ;min (1, 7;/m;) i F ]

Dij = Qii+ZQikmaX(071:7Tk/7Ti> 1= J.
k

In practice we can choosg, = % (binary case) for all state¥; which differ

from X; at just one site/pixel;; = 0 for all other.X;.

Implementation. Let X andY be two realizations of a binary MRF on a pixel.

Then if X andY differ only at one pixel, say pixel, then

m; P (x| resf P(rest) P (x| resy
m, P (yj| resh P(rest) P (y,| resd
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and since these are binaiy, 1) pixels we have

T, P (x;| X at neighbours of)

m, P (1—x;| X atneighbours of)

T

“+ x = 0,1 as before, wherd’ is

with P (x; = x| X at neighbourp = ;

defined after equation (1).

Metropolis algorithm for the Ising model with first-order ne ighbour-

hood
1. Choose sité at random
2 SetR — 625(1—2xk)(2j6N(k) z;—2)
3. Generaté/ ~ U (0, 1)
4. If R > U thenx, =1 — a2,
5. Goto 1.

This can be modified to scan the pixels in a deterministic rmann
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6.8 Gibbs Sampler

Ty
7Ti—|—7Tj '

This is a variant of Metropolis’ algorithm which replagén (1, 7; /7;) by

If we note that—=« . then we have

_ 1
Moty 147y /Ty

Ty

= P (z;|X at neighbours of)
Ty + Ty
since

P (z;]X at neighbours of) + P (1 — z;| X at neighbours of) = 1.

This algorithm changes the colour of a pixel less often ircpica.

For the Ising model with first-order neighbourhood the allgpon is then:
1. Choose a sité at random

2 SetR = ¢200-2)(Xjena a:j_z)/{l 1 et 2B(Tienm xj_Q)}

3. Generaté/ ~ U (0, 1)

4. If R > U thenz, =1 — xy,

5. Goto 1.

Again there is also a systematic version.
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6.9 Implementation of Simulated Annealing

We give an example for the Strauss model. The distributichetabels is
P (labels « exp (G# (neighbour pairs of the same labgel

and for additive Gaussian noise

1
P (X| labelg o exp ~5. Z (X — ,Ulij)Q

pixels

wherel;; is the class label of th@, j)th pixel, i, is the true grey-level of class

k pixels, andk is the variance of the noise. We then have

1 2
log P (label§X) = const — " Z (zij — )"+ Z I (same label

pairs

wherel (same labgl= 1 if pairs have same label

0 otherwise.
So we have to choose the labels to minimize:

E = Z i~ ) —26&21 (same labgl.

pixels pixels

The algorithm to find the labels is also known as a Gibbs sanmote is similar

to that described above.
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The pixels are chosen in sequence, we replace the labelXekpij) by a
sample from

P (l;;|X, other label$ i.e.

—1
P (li; = k|X, other label$ oc exp | —— (X — ju) >+ > I(labelk)

neighbours

In the simulated annealing procedure we simulate from

A
Pijr o exp | = (X — pe)? + A 1 (labelk)

N(i.j)

As the simulation continues we gradually fet— oo. Theory shows that the
rate of convergence that we should take to guarantee a gbgbiahum is\ ~
constlog (¢) which is much too slow for practical usage. However, a faster
will lead to a reasonable approximate solution.

An alternative approach, known @srative conditional modedCM) is to

set\ = oo. This corresponds to updating each pixel to maxinizé;; = k|.X, other label$.

6.10 Choice ofg

The value oft will determine the smoothness of the final labelling somepém

geometric arguments can give some guidance. Suppose tiearéabels and
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we use 8 neighbours.

If we have
A A A
A 7 A
A A A
ThenP (? # Al other label3 = 1 — esfji_l =<l
If we have
A A A
A 7 B
A B B
Then

635

e3 4+ 5 ¢ — 2

P (7 = B| other label$ =

For the case = 2, if we specify the first probability to be less than 0.1% arel th

second to be at least 10% this gives a plausible rangeasf.86 < 5 < 1.10.
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In the case of 4 neighbours we have

A
A7 A
A
SO
P(? 4 Al other labels — —“ 1
c—1+¢t

which gives a lower band fo¥ as twice that above. Whereas for

A

PO?=A)=P(?=B) (=5ifc=2)

so there must be a greater acceptability of sharp corners.
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