
STAT 718A Shape and Image Analysis

Part II: Statistical Image Analysis

1 INTRODUCTION

1.1 Notation and definitions

An imageis a two dimensional visual representation of an object (usually 2d or

3d). A digital image, x, is a discrete version of the continuous image, usually

achieved by aggregation or sampling. Letx(i, j) be the value ofpixel (i, j),

i = 1, 2, ..., r and j = 1, 2, ..., c. The termpixel is derived from the phrase

“picture element”.

Clearly, we can think of the image as a large matrix withr rows andc

columns, andx(i, j) as the value in rowi and columnj. Commonly, bothr

andc are powers of 2, eg24 = 16.
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x(1, 1) x(1, 2) . . . x(1,c)

x(2, 1) x(2, 2) . . . x(2, c)

...
... x(i, j)

...

x(r, 1) x(r, 2) . . . x(r, c)

The pixel valuesx(i, j) often take an integer value in the range 0 to 255,

that is28 = 256 levels (sometimes this is achieved by scaling), or they might

be binary (either 0 or 1). We shall denote the set of possible pixel values by

S = {0, 1, ..., m}. So we can write0 ≤ x(i, j) ≤ m or x(i, j) ∈ S, and hence

x ∈ Sn, wheren = r× c is the total number of pixels. When displaying images

it is usual, but not universal, to show 0 as “black” and 255 (or1 for binary) as
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“white” and other values as various shades of grey.

Figure 1: A simple digital image of the letter H.

In Figure 1 we see a simple(r = 7) × (c = 6) image of the letter ‘H’ with
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grey levels in the matrix
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Key ideas used throughout this course are the concepts ofneighboursand

neighbourhoods. We shall expect a relationship between pixels which are near

to each other, for example the pixel values may be “similar”.More formally,

consider the model where pixel(i, j) is a neighbourof pixel (i′, j′) if (i, j) is

close to(i′, j′). The simplest such case is thefirst-orderor 4-connectedneigh-

bourhood system where the neighbours are the two horizontaland two vertical

adjacent pixels. The next case is thesecond-orderor 8-connectedneighbour-

hood system, which contains the four diagonal pixels in addition to the first-
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order neighbours. Higher order neighbourhoods can be defined by obvious ex-

tension. Of course, we must specify special conditions for the edges and corners

of the image.

Diagrammatically, these two systems can be represented as

◦ • ◦

• (i, j) •

◦ • ◦

So, first-order neighbours are those marked•, second-order neighbours are all

those marked◦ or •. The• are sometimes refered to as edge neighbours, and

the◦ as vertex neighbours.

We define

∂1(i, j) = {(i − 1, j), (i, j − 1), (i, j + 1), (i + 1, j)}
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as the first-orderneighboursof (i, j), and

∂2(i, j) = ∂1(i, j)∪ {(i− 1, j − 1), (i− 1, j + 1), (i+ 1, j − 1), (i+ 1, j + 1)},

as the second-orderneighboursof (i, j).

Further, theneighbourhoodof pixel (i, j) is denotedN(i, j), the first-order

neighbourhoodof (i, j) is N1(i, j) = ∂1 ∪ (i, j) and the second-orderneigh-

bourhoodof (i, j) is N2(i, j) = ∂2 ∪ (i, j).

Note that, “neighbours of” does not include the pixel itself, however, “neigh-

bourhood” does; not surprisingly, these two ideas are oftenconfused.

Often we shall want to refer to the set of pixel values of the neighbours, or of

the neighbourhood, so letxN(i,j) = {x(k, l) | (k, l) ∈ N(i, j)} denote the pixel

values of the neighbours of pixel(i, j); other definitions follow similarly.

1.2 Applications

Typically the image represents the level or intensity of some spatially varying

quantity. An obvious example is brightness, as in a black andwhite photograph,

but it could be intensity of an X-ray or ultrasound picture ina medical investi-
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gation. Also it could be a multivariate image, for example brightness of (Red,

Green, Blue) in a colour picture or (ultra-violet, green, infra-red) in satellite

images.

Often it is not the pixel values that are of interest, but “objects” in the image.

The object is typically made up of points, line segments, arcs, etc. Applications

are numerous and new cheap technology is extending possibilities for future

exploitation of image analysis techniques.

Current applications include: Classification of land use from remotely sensed

data (eg. LANDSAT, METEOSAT); Automatic reading of postcodes; Iden-

tification of objects (eg planes, tumours, weeds in crops); Face recognition;

Number plate reading; Classification of chromosomes; Imageenhancement;

Removal of image noise.
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2 SUMMARY STATISTICS

2.1 Frequency distributions and histograms

Thepixel-value frequency distributiongives the frequency of each possible grey

value in the image and is defined by

f(xk) = # { (i, j) | x(i, j) = xk } , k = 0, 1, ..., m

where# is the number in the set and
∑

f(xk) = rc. The image histogram

is a graphical representation of this frequency distribution. Also, therelative

frequency distributionis defined by

p(xk) =
f(xk)

rc
, k = 0, 1, ..., m

with
∑

p(xk) = 1. We can think of this as an estimate of the true probability

distribution.

As with other applications, we can calculate summary statistics such as mean

and variance.

x̄ =
1

rc

m
∑

k=0

f(xk) xk s2 =
1

rc − 1

m
∑

k=0

f(xk) (xk − x̄)2 =
1

rc − 1

(

m
∑

k=0

f(xk)x
2
k − rc x̄2

)

Clearly other measures can be defined, such as skew and kurtosis.
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2.2 Histogram normalisation

Histogram normalisationor contrast enhancementinvolves rescaling the grey

level values so that the full range of values is present in theimage. For example,

a very low contrast image might have grey level range 50 to 100. Rescaling them

to the full range will result in an image that humans find easier to interpret. Note,

however, that there are no more distinct grey levels in the normalised image, but

it is easier to interpret.

Contrast enhancement can be expressed as a linear transformation:

x′ = b (x − a) ,

wherex′ is the transformed pixel value,a = min(x) andb = m/ (max(x) − min(x)).

2.3 Histogram equalisation

Histogram equalisationinvolves applying a non-linear transformation to the

grey levels. The transformation is chosen so that the new values take the full

range and the histogram has an approximately uniform histogram. We replace
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grey levelx by new valuex′, using:

x′ = m
x
∑

k=0

p(xk).

The result of applying this transformation can be rather disappointing when

the important information in the image is best represented by a few distinct

values.

2.4 Co-occurrence

When considering the pixel-value frequency distribution or image histogram all

information regarding the spatial arrangement of the pixelvalues is lost. One

way to retain some spatial information is to consider the values of adjacent

pixels. The imageco-occurrence(which is really just a bivariate frequency

distribution) gives the frequency of occurrence of each possible pixel value pair,

and is defined as

f(xk, xl) = # { (i, j), (i′, j′) | x(i, j) = xk, x(i′, j′) = xl, (i
′, j′) ∈ ∂(i, j) } ,

k = 0, 1, ..., m;

l = 0, 1, ..., m.
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Therelative co-occurrenceis the relative frequency of occurrences,

p(xk, xl) =
1

N
f(xk, xl), k = 0, 1, ..., m; l = 0, 1, ..., m

whereN is the total number of pixel pairs, which depends on neighbourhood

system and on treatment of edges and corners.

As with the frequency distribution, we can calculate various summary mea-

sures based on the co-occurrence, such as theenergy

E =
m
∑

k=0

m
∑

l=0

p(xk, xl)
2

or theentropyor information

H = −
m
∑

k=0

m
∑

k=0

p(xk, xl) loge p(xk, xl).

Example

Consider the following image.

2 2 1 1

2 1 1 0

1 1 0 0

1 0 0 0

First calculate the frequency distribution:

xk 0 1 2

fk 6 7 3

pk 6/16 7/16 3/16

Then,

x̄ =
1

16
(0 × 6 + 1 × 7 + 2 × 3) = 13/16 (= 0.8125),
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and

s2 =
1

15

(

02 × 6 + 12 × 7 + 22 × 3 − 16 ×
(

13

16

)2
)

= 0.5625

therefores = 0.75.
We shall now calculate the co-occurrance matrix using a second-order neighbourhood. For

example,

c(2, 2) = {(1, 1), (1, 2); (1, 1), (2, 1); (1, 2), (1, 1); (1, 2), (2, 1); (2, 1), (1, 1); (2, 1), (2, 1)}
= 6

and hence the relative co-occurrence is6/84.

The frequency matrix:




20 11 0
11 22 7
0 7 6





and relative co-occurrence matrix:




0.24 0.13 0
0.13 0.27 0.08
0 0.08 0.07





The resulting energy isE = 0.182 and entropyH = 1.82.
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3 Thresholding

3.1 Introduction

Thresholdingis an operation which transforms a grey-level image into a binary

image by converting all pixels greater than a particular value,t, to “White” and

all those less than or equal to the value to “Black” (or vice versa).

x′(i, j) =



















1 if x(i, j) is greater that the threshold, x(i, j) > t,

0 otherwise, x(i, j) ≤ t

wherex′ is the binary output. Of course the thresholdt can be chosen manually,

perhaps by trial and error, but an automatic procedure is preferable.

A common use of thresholding is to distinguish an object fromthe back-

ground. If the object has generally higher pixel values thanthe background

then it will be shown as “White” on “Black”, otherwise as “Black” on “White”.

3.2 Notation and definitions

Let D represent the set of pixels in the “Dark” class andB the “Bright” class.

Denote the probability function of each class asπB(x) andπD(x). A given
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image will be composed of bright and dark pixels and so the overall pixel value

distribution is a mixture of these

π(x) = Pr(X(i, j) = x) = Pr(X(i, j) = x, (i, j) ∈ B) + Pr(X(i, j) = x, (i, j) ∈ D)

= Pr(X(i, j) = x|(i, j) ∈ B)Pr((i, j) ∈ B) + Pr(X(i, j) = x|(i, j) ∈ D)Pr((i, j) ∈ D)

= πB(x)πB + πD(x)πD

whereπB (πD) is the (prior) probability of a randomly chosen pixel beingfrom

the Bright (Dark) class, andπB(x) (πD(x)) the likelihood of a pixel valuex

given it is from the Bright (Dark) class.

To illustrate this consider the following pixel value distribution. The dotted

curve on the left describes the pixel distribution of the Dark pixels (π(x, D) =

πD(x)πD) and on the right, of the Bright pixels (π(x, B) = πB(x)πB). The solid

line gives the combined distributionπ(x). In this exampleµD = 1.7, σ2
D = 0.9,

µB = 6, σ2
B = 1.5 andπD = 0.6.

Now, with thresholdt, the probability of incorrectly labelling a pixel is given
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by

L = Pr(X(i, j) ≤ t, (i, j) ∈ B) + Pr(X(i, j) > t, (i, j) ∈ D)

= Pr(X(i, j) ≤ t|(i, j) ∈ B)πB + Pr(X(i, j) > t|(i, j) ∈ D)πD

= FB(t)πB + (1 − FD(t))πD.

UnfortunatelyFB, FD, πB andπD are not usually known, so minimisation of

this is not possible. (See Homework for an example where these are assumed

known.)

The image histogram, however, is known. In practice inspection of the his-

togram is not totally cut-and-dry for making the choice of suitable threshold
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t.

We shall now consider methods for automatically choosing the threshold

value.

3.3 Minimizing within-group variance

If we suppose that the two classes can be seperated exactly using some choice

of threshold, then we can approximate the probability function of the “Dark”

pixels by

πD(x) ≈ Pr(X(i, j) = x|X(i, j) ≤ t) =
Pr(X(i, j) = x, X(i, j) ≤ t)

Pr(X(i, j) ≤ t)

=















π(x)/F (t), x ≤ t

0 x > t

and hence estimate it by using sample values:

pD(x) =
p(x)

Fn(t)
, for x ≤ t,

whereFn(t) =
∑t

x=0 p(x) is the sample cumulative distribution function. The

probability function of the “Bright” pixels is similarly estimated by

pB(x) =
p(x)

1 − Fn(t)
, for x > t.
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Of course in practice the two distributions will overlap, sosome of those des-

ignated “Dark” will in fact be “Bright” and vice versa.

Now the sample variance of the “Dark” pixels can be estimatedby

s2
D(t) =

t
∑

x=0

(x − x̄D(t))2 pD(x)

wherex̄D(t) =

t
∑

x=0

x pD(x) is the mean of the “Dark” pixels. Similarly, the

variance of the “Bright” pixels is

s2
B(t) =

I
∑

x=t+1

(x − x̄B(t))2 pB(x)

wherex̄B(t) =

I
∑

x=t+1

x pB(x).

Note that we are effectively dividing the variance sum byn rather than the

usualn − 1; in practicen is so large that the difference does not matter.

Since, in practice, we do not knowt one approach is to chooset to minimise

s2
W (t) = Fn(t)s

2
D(t) + (1 − Fn(t))s

2
B(t)

which is the within group variance. The minimisation can proceed by evaluat-

ing this for allt.

17



A faster method is to note that the total variance (which doesnot depend on

t) can be written as a sum of the within group variance and the between group

variances2 = s2
W (t) + s2

BG(t) (compare this with ANOVA). Since the total

variance is fixed, we can therefore equivalently maximise the between group

variance, that is

s2
BG(t) = Fn(t)(x̄D(t) − x̄)2 + (1 − Fn(t))(x̄B(t) − x̄)2.

This is equivalent to maximising

s2
BG(t) = Fn(t)(1 − Fn(t))(x̄D(t) − x̄B(t))2

sincex̄ = Fn(t)x̄D + (1 − Fn(t))x̄B.

3.4 Minimising Kullback-Leibler Divergence

Let f(x) be the probability function of a modelfor the grey level distribution.

The Kullback-Leibler divergence,J , is measured by

J =
m
∑

x=0

p(x) log{p(x)/f(x)} =
m
∑

x=0

p(x) log p(x) −
m
∑

x=0

p(x) log f(x).

Note thatJ ≥ 0 (Exercise) andJ = 0 if and only if p(x) = f(x) for all

x. We want to chooset to minimizeJ , however, we need only minimize the
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informationmeasure

H = −
m
∑

x=0

p(x) log f(x).

Sincem is usually large (typicallym = 255) the probability distribution of

the grey levels can be approximated by a continuous distribution. We assume

that the grey levels come from a mixture of normal distributionsN(µD, σ2
D),

N(µB, σ2
B) with mixing proportionsπD andπB = 1 − πD. The probability

density function of a mixture of normal distributions is

f(x) = πD

(

1
√

2πσ2
D

e
− 1

2

(x−µD)2

σ2
D

)

+πB

(

1
√

2πσ2
B

e
− 1

2

(x−µB)2

σ2
B

)

−∞ < x < ∞.

If the modes are well separated then, approximately

f(x) =







































πD

(

1√
2πσ2

D

e
− 1

2

(x−µD)2

σ2
D

)

, x ≤ t,

πB

(

1√
2πσ2

B

e
− 1

2

(x−µB)2

σ2
B

)

, x > t

andH then simplifies to

H ≈ 1 + log 2π

2
− πD log πD − πB log πB +

1

2
(πD log σ2

D + πB log σ2
B).

19



If the parametersµD, σD, µB andσB are known this is fairly straightforward,

but in practice they must be estimated to give an automatic procedure. Under the

assumption that the modes are well separated, we usep(0), . . . , p(t) to estimate

σ2
D, µD andπD, andp(t + 1), . . . , p(m) to estimateσB, µB andπB.

4 NUMERIC FILTERS

4.1 Definitions

We first revisit the ideas of neighbours and neighbourhood systems, in this sec-

tion we shall require further notation.

Define∂1(i, j) as the first-orderneighboursof (i, j), and∂2(i, j), the second-

orderneighboursof (i, j). Further, theneighbourhoodof pixel (i, j) is denoted

N(i, j), the first-orderneighbourhoodof (i, j) is N1(i, j) = ∂1 ∪ (i, j) and the

second-orderneighbourhoodof (i, j) is N2(i, j) = ∂2 ∪ (i, j).

Note that, “neighbours of” does not include the pixel itself, however, “neigh-

bourhood” does; not surprisingly, these two ideas are oftenconfused.

Often we shall want to refer to the set of pixel values of the neighbours, or
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the neighbourhood, so letxN(i,j) = {x(i, j) | (i, j) ∈ N(i, j)} denote the pixel

values in the neighbourhood of pixel(i, j); other definitions follow similarly.

A neighbourhood operatoror filter is a, usually simple, operation which is

applied to all neighbourhoods of an image.Numeric filtersare neighbourhood

operators which are arithmetic functions of the pixel values, such as addition,

averages, maxima, etc.

If x denotes the input image andx′ the output image, then the form of a

general neighbourhood operator is:

x′(i, j) = φ
(

xN(i,j)

)

.

The size of the filter is usually odd, say 3, 5 or 7, and hence theneighbourhood

has 9, 25 or 49 elements.

Most commonly used numeric filters are examples of thegeneral linear fil-

ter,

x′(i, j) =
∑

(i′,j′)∈N(i,j)

w(i − i′, j − j′) x(i′, j′).

The following are a typical set of weights for a second-orderneighbourhood,
that is a filter of size 3,
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1 2 1
2 4 2
1 2 1

×1/16

Note that in this case all weights are positive and
∑∑

w(k, l) = 1.

4.2 Mean filters

A mean filteris the mean of the pixel values in the neighbourhood. The simplest

case is asimple averageof the pixels, this is also known as thebox filter. Alter-

natively, we can use a general weighted average of the neighbourhood pixels

x′(i, j) =
∑

(i′,j′)∈N(i,j)

w(i − i′, j − j′) x(i′, j′),
∑

w = 1.

Examples

A 3x3 box filter:

1 1 1
1 1 1
1 1 1

× 1/9

A 3x3 weighted mean filter:

0 1 0
1 4 1
0 1 0

× 1/8

Note that these definitions apply for “interior” pixels only, special treatment is

needed at edges and corners.

Applications: The most common use of the mean filter is to remove noise in an

image, however this is achieved at the expense ofblurring edges.
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4.3 Median filter

Themedian filteris the median of the values of the pixels in the neighbourhood.

x′(i, j) = median
(

xN(i,j)

)

.

Applications: This filter also smooths out noise, but does not blur the edges to

the same extent as the mean filters, see Figure 2.1.

Examples

Consider the following input image

4 5 5 7
5 2 2 1
2 3 1 1
5 4 3 1

1) A 3x3 box filter with weights:




1 1 1
1 1 1
1 1 1





1

9

Consider the output for pixels labelled A, B and C:

B C

A

4.0 3.2 3.0 2.8

3.5 2.8 2.6 2.2

3.5 2.9 1.9 1.3

3.5 3.0 2.2 1.5
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A =

















1 × 4 + 1 × 5 + 1 × 5

+1 × 5 + 1 × 2 + 1 × 2

+1 × 2 + 1 × 3 + 1 × 1

















1

9
=

25

9
(≈ 2.8)

B =









1 × 4 + 1 × 5

+1 × 5 + 1 × 2









1

4
=

16

4
= 4.0

C =









1 × 4 + 1 × 5 + 1 × 5

+1 × 5 + 1 × 2 + 1 × 2









1

6
=

19

16
(≈ 3.2)

2) A 3x3 weighted average with weights:




1 2 1
2 8 2
1 2 1





1

20

Consider the output for pixels labelled A, B and C:

B C

A

4.2 3.9 2.8 4.8

4.0 2.6 1.8 1.8

3.0 2.8 1.6 1.1

4.2 3.6 2.5 1.3

A =

















1 × 4 + 2 × 5 + 1 × 5

+2 × 5 + 8 × 2 + 2 × 2

+1 × 2 + 2 × 3 + 1 × 1

















1

20
=

53

20
(≈ 2.6)
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B =









8 × 4 + 2 × 5

+2 × 5 + 1 × 2









1

13
=

54

13
(≈ 4.2)

C =









2 × 4 + 8 × 5 + 2 × 5

+1 × 5 + 2 × 2 + 1 × 2









1

16
=

62

16
(≈ 3.9)

3) A 3x3 median filter. Consider the output for pixels labelled A, B and C:

B C

A

4.5 3.0 2.0 1.5

3.5 2.0 2.0 1.0

3.5 3.0 1.0 1.0

3.5 3.0 2.0 1.0

A = median{4, 5, 2, 5, 2, 1, 2, 3, 1} = 2,

B = median{4, 5, 5, 2} = 4.5 and

C = median{4, 5, 2, 5, 2, 1} = 3.

4.4 Quadratic filter

If we assume that over a (small)m × n neighbourhood the image can be mod-

elled by a quadratic surface

f(i, j) = a1 + a2i + a3j + a4i
2 + a5ij + a6j

2 + ǫ(i, j)
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then we can fita1, ..., a6 by least squares. This results in a linear filter with

weights

w(k, l) =
1

mn

(

1 +
5/4(m2 − 1) − 15k2

m2 − 4
+

5/4(n2 − 1) − 15l2

n2 − 4

)

for k = −(m − 1)/2, ..., (m− 1)/2 andl = −(n − 1)/2, ..., (n− 1)/2. For a
3x3 neighbourhood this gives the weights:





−1 2 −1
2 5 2

−1 2 −1





1

9

Applications: Again, a smoothing filter.

This filter can be applied, then subtracted from the originalimage to give an

estimate of the noise. We can then apply diagnostic tests to these residuals in a

similar manner to usual regression analysis.

4.5 Laplacian filter

TheLaplacian filteris a weighted mean filter, with special weights (
∑

w = 0),

for a 3x3 neighbourhood these take the following form.
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0 1 0
1 -4 1
0 1 0

or
1 1 1
1 -8 1
1 1 1

× 1/3

The Laplacian of a 2d surface,f , is defined by

▽
2f =

(

∂2

∂i2
+

∂2

∂j2

)

f =
∂2f

∂i2
+

∂2f

∂j2
.

If the values in a neighbourhood of(i, j) can be modelled by a quadratic surface

of the form

f(i, j) = a1 + a2i + a3j + a4i
2 + a5ij + a6j

2

then the neighbourhood looks like

a1 − a2 − a3 + a4 + a5 + a6 a1 − a2 + a4 a1 − a2 + a3 + a4 − a5 + a6

a1 − a3 + a6 a1 a1 + a3 + a6

a1 + a2 − a3 + a4 − a5 + a6 a1 + a2 + a4 a1 + a2 + a3 + a4 + a5 + a6

and▽
2f = 2a4 + 2a6, and this is also produced by either of the above filters.

So these filters produce a value which depends on the second derivative. Its

effect is to return 0 when the image is flat or linear, and non-zero when a jump

is present, hence, the filter is essentially anedge detector. There are many
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other filters for edge detection, including the Roberts’ Operator and the Sobel

Operator.

4.6 Template matching

This is another special case of the general weighted averagenumeric filter, with

weights chosen to match the application.

For example, if we wish to find the let-
ter “H” in an image (perhaps of a post-
code or car registration plate) weights
with an “H” pattern are used, this set
of weights is called thetemplate.

1 0 1

1 1 1

1 0 1

High values in the filtered output image indicate possible locations of the

template. Of course the template could be more complicated,and could be part

of a grey-level image. A major drawback is that seperate templates may be need

for different magnifications and rotations.
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5 MORPHOLOGICAL OPERATORS

Symbolic filtersare operators which are defined in terms of Boolean or logical

operation, such as AND, OR or NOT.

Morphological operatorsare a special type of symbolic filter which gener-

ally extract information onshape, that is properties of objects after translation,

scale and rotation have been taken into account.

5.1 Region-growing filter

Suppose that the image is composed of labelled regions or classes. Let the set

of labels be denotedL = {1, 2, ..., k}, hencex ∈ Ln wheren is the number of

pixels. We can grow regionc say (c ∈ L) by using the simple symbolic filter

which gives

x′(i, j) =















c if #
(

x∂(i,j) ∩ c
)

> 0

x(i, j) otherwise.

That is we change the label toc if any of the neighbours have labelc.

A more sophisticated version can grow a region only if a majority of neighbours
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take the same label, that is

x′(i, j) =































c if #
(

x∂(i,j) ∩ c
)

> #
(

x∂(i,j) ∩ c′
)

x(i, j) otherwise

For binary images

For a binary image (x(i, j) = 0 or 1), the first of these region-growing filters is

just

x′(i, j) = max{x∂(i,j)}

and a region-shrinking filter is given by

x′(i, j) = min{x∂(i,j)}.

5.2 Binary dilation

This is a transformation, calledMinkowski addition, which combines two sets

using vector addition of set elements. IfA and B are subsets ofId (the d-

dimensional regular lattice) with (vector) elementsa andb, then thedilation of

A by B is the set of all vector sums of pairs of elements; one fromA and the
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other fromB, that is the dilation ofA by B is

A ⊕ B = {c | c = a + b for somea ∈ A andb ∈ B}

whereId denotes thed-dimensional lattice with integer labels. Note that since

vector addition is symmetric so is dilation, henceA ⊕ B = B ⊕ A.

In practiceA is associated with the image andB is refered to as thestruc-

turing element. For example, with structuring elementB = {(i, j) | i =

−1, 0, 1; j = −1, 0, 1} we get the region-growing operator introduced earlier.

Translation operator

Let A be a subset ofId (A ⊂ Id) andt a point inId (t ∈ Id). We denote the

translationof A by the pointt by At, with

At = {c | c = a + t for somea ∈ A} .

Then dilation is just the union of translations,

A ⊕ B = ∪a∈ABa = ∪b∈BAb.
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Set identities

Having introduced the new set operator,⊕, we can consider various set results,

proof of the following are left as exercises.

• (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C),

• A ⊕ Bt = (A ⊕ B)t,

• (B ∪ C) ⊕ A = (B ⊕ A) ∪ (C ⊕ A),

• A ⊕ (B ∪ C) = (A ⊕ B) ∪ (A ⊕ C).

Also, if A ⊂ B, thenA⊕K ⊂ B ⊕K, so dilation is anincreasingoperator.

5.3 Binary erosion

This is the dual or complement of dilation. IfA andB are sets, then the erosion

of A by B is the set of elementsx for whichx + b ∈ A for everyb ∈ B, that is

the erosion ofA by B is defined by

A ⊖ B = {x | x + b ∈ A for everyb ∈ B} .
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An alternative representation is

A ⊖ B = {x | Bx ⊂ A} .

ThusB may be visualised as a probe that slides across the imageA, testing the

spatial nature ofA at every point, whereB translated byx can be contained in

A (by placing the origin ofB atx), thenx belongs to the erosionA ⊖ B.

A further representation is

A ⊖ B = ∩b∈BA−b

that is an intersection of negative translations.

Erosion-Dilation Relation

Recall DeMorgan’s Law, that(A ∪ B)c = Ac ∩ Bc, the corresponding rule for

erosion and dilation is

(A ⊖ B)c = Ac ⊕ B̌

whereB̌ is thereflectionof B defined by

B̌ = {x | for someb ∈ B, x = −b} .
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Proof

x ∈ (A ⊖ B)c if and only if x /∈ A ⊖ B.

x /∈ A ⊖ B if and only if there existsb ∈ B such thatx + b /∈ A.

There existsb ∈ B such thatx + b ∈ Ac if and only if there existsb ∈ B such

thatx ∈ (Ac)−b.

There existsb ∈ B such thatx ∈ (Ac)−b if and only if x ∈ ∪b∈B(Ac)−b.

Now x ∈ ∪b∈B(Ac)−b if and only if x ∈ ∪b∈B̌(Ac)b: andx ∈ ∪b∈B̌(Ac)b if and

only if x ∈ Ac ⊕ B̌.

Corollary (A ⊕ B)c = Ac ⊖ B̌. (Exercise)

Example 1 - Binary dilation

If A = {(0, 1), (1, 1), (2, 1), (2, 2), (3, 0)} andB = {(0, 0), (0, 1)}, then findA ⊕ B.

A ⊕ B = A ⊕ B

•
•
• •

•

• • • •
• •
• • •

• •

Example 2 - Translation operator

a) If A = {(0, 0), (1, 0), (2, 0), (2, 1)} andt = {(1, 2)}, then findAt.

A t At
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•
•
• •

• •
•
• •

b) If A = {(0, 0), (1, 0), (2, 0), (2, 1)} andB = {(0, 0), (0, 1), (1, 2)}, then find∪b∈BAb.

A B ∪b∈BAb

•
•
• •

• •
•

• •
• • •
• • •

• •

Example 3 - Set identities

If A = {(0, 0), (1, 0), (2, 0), (2, 1)}, B = {(0, 0), (0, 1)} andC = {(1, 1)}, then illustrate the

identity (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C).

A B A ⊕ B C (A ⊕ B) ⊕ C

•
•
• •

• • • •
• •
• • •

• • •
• •
• • •

A B C B ⊕ C A ⊕ (B ⊕ C)

•
•
• •

• •
• • • • •

• •
• • •

Example 4 - Binary erosion

If A = {(0, 2), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (3, 1), (4, 1), (5, 1)}andB = {(0, 0), (0, 1)},

then findA ⊖ B.

A B A ⊖ B

35



•
• • • • •
• •
•
•
•

• •
• • • •
•

Example 5 - Dilation-Translation

For A andB as above, findA(0,0), A−(0,1) and henceA(0,0) ∩ A−(0,1) and compare this with

A ⊖ B.

A(0,0) A−(0,1) A(0,0) ∩ A−(0,1)

•
• • • • •
• •
•
•
•

•
• • • • •
• •
•
•
•

• • • •
•

Example 6 - Erosion-Dilation Relation

A B A ⊖ B

+ •
• • • •

• • •
• • • • • •

• • • •
• • • •

• •
• +

• •

+

• •

• •

Ac B̌ Ac ⊕ B̌
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• • • • • • • •
• • • • • • •
• • • •
• • • • •
• •
• • • •
• • • •
• • • • • • • •

• •
+ •

• •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • •
• • • • • • • •
• • • • • •
• • • • • • • •
• • • • • • • •

5.4 Binary opening and closing

The openingof imageA by structuring elementK is denotedA ◦ K and is

defined by

A ◦ K = (A ⊖ K) ⊕ K

that is erosion followed by dilation. The opening characterisation theorem

states that

A ◦ K = {x | for somet ∈ A ⊖ K, x ∈ Kt}

that is

A ◦ K = ∪t∈A⊖KKt.

So the points inA ◦K are precisely those obtained by sweeping the structuring

element over the inside ofA, never permitting any point of the structuring ele-
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ment to be outsideA. The set of all points covered by the sweep is the opening

of A by K.

Applications: The opening of an image by a small disk structuring element

smooths the perimeter of an object and eliminates small “islands”.

Theclosingof A by K is denotedA • K and defined by

A • K = (A ⊕ K) ⊖ K

that is dilation followed by erosion.

Applications: If the image contains an ideal object,A, corrupted by noise so

that holes are created inside the object, then it can be shownthat the ideal object

can be recovered without error by the closing of the observedimage,B, with a

carefully chosen structuring element,K, that isB • K = A.

5.5 Grey-scale Morphology

The binary operations considered so far are readily extended to grey-scale im-

ages, however, we start with some basic definitions.
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Let A be a subset ofId andF = {x|x ∈ Id−1, y ∈ I, (x, y) ∈ A}, for

example inn = 2, A = {(0, 2), (1, 2), (1, 3), (2, 1), (2, 2)}, thenF = {0, 1, 2}

(or F ′ = {1, 2, 3}). In d = 3 consider a rectangular boxA andF its projection

on to a two dimensional plane.

in general, we can defineF in n ways, each time projectingA onto a different

axis. In image analysis, however, only one such projection will make sense,

more later.

Top and Umbra

Thetopor top surfaceof A is defined as

T (A) = {z|z = max{y | (x, y) ∈ A}, x ∈ F}.

The umbraof f (any integer-valued function defined on some subsetF of

In−1 is a set consisting of the surfacef and everything below the surface, which

is defined by

U(f) = {(x, y)|y ≤ f(x), x ∈ F, y ∈ I}.
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Example

Umbra Top

•
• • • •
• • • •

• • • • • •
• • • • • •

• • • • • • •
• • • • • • •

×
× × ×

× ×

×

The setf denoted×, and its umbra,U(f), denoted•.

The grey-scale dilation off by structuring elementk is defined by

f ⊕ k = T (U(f) ⊕ U(k)}

and the grey-scale erosion off by k by

f ⊖ k = T (U(f)⊖ U(k)}.

The grey-scaleopeningof f by structuring elementk is defined by

B ◦ K = (B ⊖ K) ⊕ K

and the grey-scaleclosingof f by K by

B • K = (B ⊕ K) ⊖ K.
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The grey-scale opening off by k can be visualised by slidingk underf . The

set of all the highest points reached by some part ofk is the opening.

Closing can be thought of by sliding the reflection ofk over the top off .

The set of all the lowest points reached by some part ofk is the closing off by

k.

A function and its umbra

f U(f)

•
• • •

• •

•

•
• • • •
• • • •

• • • • • •
• • • • • •

• • • • • • •
• • • • • • •

A small structuring element and its umbra

(origin at bottom left of structuring element)

k U(k)

•
• •

•
• • •
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Grey-scale dilation

U(f) ⊕ U(k) T (U(f) ⊕ U(k)) = f ⊕ k

•
• • • •

• • • • • • •
• • • • • • •

• • • • • • • •
• • • • • • • •

• • • • • • • • •
• • • • • • • • •

•
• • •

• • •

•

•

Grey-scale erosion

U(f) ⊖ U(k) T (U(f) ⊖ U(k)) = f ⊖ k

•
•

• • •
• • • •

• • • • •
• • • • •

•

• •
•

•
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6 IMAGE MODELS AND ESTIMATION

6.1 Introduction

In this chapter we shall, for ease of notation, label the pixels 1, 2, . . . , n where

n = r×c, and denote a pixel valuexi for pixel i, sox = {x1, x2, . . . , xn}. Each

pixel variable can be discrete or continuous. We refer to thepossible values of

the pixel variable as intensities. An arbitrary shading will be denoted byx.

We need a probabilty model or distribution over the possibletrue signals

which reflects our (prior) ideas of the scene. For computational reasons it is

highly desirable to have a local description of the probability model, this can be

achieved using models defined in terms of Markov random fieldswhich are 2-d

models closely related to Markov chains.

6.2 Markov random fields (MRF)

If we want to model images, we need a random process defined notjust over a

single variable, time, but over 2-dimensional space, this leads to the idea of a

Markov random field. When considering space, there is no obvious ordering of
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the axes, unlike time, so we replace the idea of therecent pastby neighbours,

anddistant pastby not neighbours.

A Markov random fieldis a joint probability distribution with probability

function (or p.d.f. if continuous)π(x), on the set of all possible shadings ofx,

which satisfies the Markov property,

π(xi | xj, j 6= i) = π(xi | x∂(i))

that is the conditional distribution ofxi depends only on the values of the neigh-

bouring pixels.

Although it is possible to construct Mrfs from first principles, it is tricky to

check that the model is valid. A more usual approach is to choose a particular

form of the Gibbs distribution. It can be proven that every Mrf corresponds to a

unique Gibbs distribution, and vice versa.

Gibbs distributions

A Gibbs distributionis defined as

π(x) =
1

Z(β)
exp

{

−β
∑

i

∑

j

φ(xi − xj)

}

=
1

Z(β)
exp {−βV (x)}
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where the sum is over all pairs of neighbouring pixels,V (x) is known as the en-

ergy, andφ as the potential. This terminology indicates the origins ofthis model

as coming from statistical physics. In most cases the normalising constantZ(β)

is intractable.

The parameterβ controls the variation between neighbouring pixel values.

Note thatβ ↑ ∞ implies constantx, and smallβ correspondingly small spa-

tially structured variation, only asβ ↓ 0 does the variation become spatially

unstructured.

An alternative specification is in terms of the local conditional distributions

π(xi | x∂(i)) =
1

Z∗(β)
exp







−β
∑

j∈∂(i)

φ(xi − xj)







whereZ∗(β) is not the same asZ(β).

The most widely used Gibbs distribution has a quadratic potential (φ(u) =

u2) and hence is a multivariate Normal distribution,Xi|x∂(i) ∼ N
(

x̄∂(i), (4β)−1
)

for a first-order neighbourhood.
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Strauss model (or Potts model)

This is a model for unordered categories, such as labels on a map. Here, the

energy is the number of pairs of neighbouring pixels with dissimilar labels.

Thus the most probably maps are all of one label, and the leastprobable ones

(for 4-neighbours) are patchwork quilts like a chess-board(if β > 0). This is

Markov since

P (Xi = x| rest ofX ’s) ∝ exp [β# (neighbours of labelk)] .

Ising model

This is a special case of the Strauss distribution with only two categories and

φ(u) = 1 if u = ±1; 0 if u = 0, hence the local conditional probability function

is

π
(

xi = x | x∂(i)

)

=
exp{−β#{xj | xj = 1 − x, j ∈ ∂(i)}

exp{−β#{xj | xj = 0, j ∈ ∂(i)}+ exp{−β#{xj | xj = 1, j ∈ ∂(i)}
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wherex = 0, 1. For this simple model we can write down the joint probability

function

π (x) =
1

Z(β)
exp {−β#{ discordant pairs}}

though the form ofZ(β) is very complicated.

Example (4 neighbour Ising model). This is the Strauss model with only 2

possible labels and a 4-neighbour graph. In this case

P (xij = x| neighbours) =
exT

1 + eT
x = 0, 1 (1)

whereT = 2β
∑

i′j′ neighboursXi′,j′ − 4β.

We can write this as

P (Xij = 1|neighbours) =
e−βn0

e−βn1 + e−βn0

P (Xij = 0|neighbours) =
e−βn1

e−βn1 + e−βn0
.

where n0 = # neighbours of pixeli with value 0

n1 = # neighbours of pixeli with value 1.

(A pixel is not considered a neighbour of itself).

If β > 0 pixels will tend to be more like neighbours

β < 0 pixels will tend to be less like neighbours (chessboard, spotty).
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The joint distribution ofX is

P (X11 = x11, X12 = x12, . . . , Xrc = xrc) =
1

Z
exp (−β (# discordant pairs of neighbours))

whereZ is a very complicated constant to ensure
∑

P (X) = 1.

Proof that the Ising Model satisfies the Markov property

Denote{Xlm = xlm, (l, m) 6= (i, j)} as “rest” for all pixels6= (i, j).

P (Xij = 1| rest) =
P (Xij = 1 ∩ rest)

P ( rest)

and

P (rest) = P (Xij = 1 ∩ rest) + P (Xij = 0 ∩ rest)

=
1

Z
exp (−β (n0 + d)) +

1

Z
exp (−β (n1 + d))

whered = # of discordant pairs of neighbours not involving(i, j).Hence,

P (Xij = 1| rest) =
1
Z
e−β(n0+d)

1
Z e−β(n0+d) + 1

Ze−β(n1+d)
=

e−βn0

e−βn0 + e−βn1
.

Also, P (Xij = 0| rest) = 1 − P (Xij = 1| rest) = e−βn1

e−βn0+e−βn1
. So the condi-

tional distribution ofXij given the rest only depends on the neighbours ofXij,

i.e.

P (Xij = xij| rest) = P (Xij = xij| neighbours)
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So the Markov Property is satisfied.

The Ising model has a critical value ofβcrit = sinh−1 1 ≈ .88 such that, as

rc → ∞, for β < βcrit there are no infinite patches of one colour, whereas, for

β > βcrit there will always be such infinite patches.

Auto-models

Another class of model can be defined by specifying the the form of the condi-

tional distribution. For example suppose that the conditional distribution ofXi

has a binomial distribution with index parameterci and probabilityπi, which is

dependent on the values of the neighbours; the conditional probability is then

p(xi|x∂(i)) =

(

ci

xi

)

πxi

i (1−πi)
ci−xi xi = 0, 1, . . . , ci where πi =

exp{a + b
∑

xj}
1 + exp{a + b

∑

xj}
.

The resultant joint probability distribution,π(x), is auto-binomial. The Ising

model is a special case of the auto-binomial with index parameterci = 1 and

constrainta = −2b.

Clearly, other auto models can be defined simply by specifying the form

of the conditional distribution: auto-Poisson,λi = exp {a + b
∑

xj}, auto-
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normal, µi = a + b
∑

xj. The relationships between model parameter and

function of neighbours (a + b
∑

xj) is clear when these models are written in

regular exponential family form. It can be shown thata + b
∑

xj must be equal

to the natural parameter of the distribution.

Isotropy versus Anisotropy

We can further generalise by allowing different parametersfor different direc-

tions, that is replaceb (or β) by b(1, 1) andb(1, 2) for the horizontal and vertical

neighbours, andb(2, 1) and b(2, 2) for the diagonal neighbours. If there is a

commonb parameter, the model isisotropic (same in all directions) otherwise

it is anisotropic.

6.3 Simulation of MRFs

From the definitions alone it is rather difficult to get a feel for the properties of

these models. One way is to simulate samples from the distribution and study

properties of the samples. Standard methods of simulation,however, are not

appropriate due to the very high dimension of the sample space, for a binary
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image withr = c = 256 there are more than10140×140 elements in the sample

space (i.e. huge!). When the model is a Gibbs distribution, we can use the Gibbs

Sampler (introduced in 1984 by Geman and Geman).

The Gibbs Sampler is a simple iterative algorithm which produces a Markov

chain with the required distribution as its limiting or equilibrium distribution.

The algorithm is started from an arbitrary starting position, then after an ini-

tial transient period subsequent values are collected. These realisations of the

Markov chain form apseudo-sample from the required distribution and can be

used to estimate various statistical measures of the images.

At each iteration, only one pixel changes in value: the sequence in which the

pixels are visitied is arbitrary, but it is usual to visit them in the labelled order.

The sampling algorithm is defined as follows:
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• Pick an arbitrary starting vector,x0 = (x0
1, x

0
2, ..., x

0
n).

• Simulate a new value for each pixel from the following conditional distri-

butions:

x1
1 from π(x1|x0

2, x
0
3, ..., x

0
n)

x1
2 from π(x2|x1

1, x
0
3, ..., x

0
n)

...

x1
i from π(xi|x1

1, x
1
2, ..., x

1
i−1, x

0
i+1, ..., x

0
n)

...

x1
n from π(xn|x1

1, x
1
2, ..., x

1
n−1)

This completes the transition fromx0 to x1.

• For thetth iterative sweep obtain a new intensity for pixeli by simulating

xt+1
i from the conditional distribution,π(xi|xt+1

1 , xt+1
2 , ..., xt+1

i−1, x
t
i+1, ..., x

t
n).

After an initial transient period all subsequent sweeps give realisations from

the required probability distribution. It is important to monitor convergence to

the equilibrium distribution and discard the realisationsobtained before equi-

librium is reached. This is often achieved using various summary statistics of

52



the evolving chain. Also, we must determine a suitable sample size; this can be

achieved by making modifications to the usual approach to sample size calcula-

tions to make allowances for the correlation between samplemembers.

6.4 Parameter Estimation

Suppose that we have a single observation from the auto-binomial model, then

how can we make inferences about parametersa andb. The obvious suggestion

is to use maximum likelihood, that is maximise the joint probability π(x|a, b)

of the data given the parameters. We have noted, however, that the normalising

constant in this distribution can not be easily evalued, butwe do know the local

conditional distributions,π(xi|x∂i
, a, b). If the xi were independent then the

joint distribution would be given by the product of the localdistribution, but

in image applications they are not independent. Instead we can use conditional

likelihood procedures based on the coding method due to Besag (1972, 1974).

Suppose we wish to consider a Markov random field with a first-order neigh-

bourhood system. We start by labelling the sites with• and× alternatively.
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• × • × • × • ×

× • × • × • × •

• × • × • × • ×

× • × • × • × •

Coding pattern for a first-order neighbourhood.

Now the variables associated with the sites× given the observed values of

the other sites are mutually independent. Hence, the conditional likelihood,

l of the pixels in one coding set given the values of the pixels in the second

coding set can be obtained as the product of the conditional distributions of the

corresponding pixels,

l =
∏

π(xi|x∂i
)

the product is over the pixels in a coding set and the log-likelihood,

L =
∑

log {π(x(i, j)|x∂i
)}

where the sum is over pixels in the coding set. For the auto-binomial this be-
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comes

L =
∑

(

log

(

c

xi

)

+ xi log πi − (c − xi) log(1 − πi)

)

where, for a first-order anisotropic scheme,πi is given by

πi =
exp{a + b1(u + u′) + b2(v + v′)}

1 + exp{a + b1(u + u′) + b2(v + v′)}

whereu andu′ are the horizontal neighbours, andv andv′ the vertical neigh-

bours. The resulting normal equations are,

∑

xi =
∑

c π̂i

∑

xi(u + u′) =
∑

(u + u′)c π̂i

∑

xi(v + v′) =
∑

(v + v′)c π̂i

where

π̂i =
exp

{

â + b̂1(u + u′) + b̂2(v + v′)
}

1 + exp
{

â + b̂1(u + u′) + b̂2(v + v′)
}.

Clearly there are similar equation for other neighbourhoodschemes, such as

first-order isotropic.
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6.5 Bayesian Image Analysis: segmentation and posterior estimation

The simplest type of segmentation is thresholding which allocates a pixel(i, j)

to classAk if xij ∈ [tk, tk+1) wheret1, t2, . . . tq+1 are threshold levels. This

approach has been discussed in§2. It is based on a pixel-by-pixel consideration,

whereby observationsxi,j are considered independently. We can achieve better

results by using the fact that neighbouring pixel will oftenhave similar grey

levels, and will generally belong to the same class. In orderto proceed we need

to formulate statistical models for images.

Suppose we do not observe the true image, instead we observe imagey which

is adegradedversion ofx. This degradation typically includesblur andnoise

which may be due to the equipment used to detect and record theimage, or

physical properties of the process being imaged such as radioactive decay in

medical imaging.

The most commonly used model is

yi =
∑

j∈N(i)

hi,j xj + ǫi

whereh is a numeric filter (as in chapter 3) andǫ are independent additive
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Normal noise,ǫj ∼ N(0, σ2). A more compact formulation is in matrix terms

y = Hx + ǫ.

Possible estimators are the direct inversionH−1y and the least-squares solu-

tion (HTH)−1HTy. These solutions, however, are rarely acceptable because of

numerical difficulties caused by ill-conditioning. Briefly, high-frequency com-

ponents in the truth are smoothed away by the blur function, but in practice

almost certainly exist in the observed image because of noise. These compo-

nents are then grossly magnified by the inversion process, leading to a estimate

which may consist largely of random noise.

The following approach to image analysis has been proposed,by some for

totally pragmatic reasons and by others for philosophical reasons. This is often

calledBayesian image analysisand was first proposed in 1984 by Geman and

Geman, and by Besag. Instead of basing estimation on the likelihood function,

we consider theposterior distributionwhich incorporates additional (prior) in-

formation.

Suppose that we have some idea of the nature of the true scene,and can
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quantify this knowledge as a probability distribution,π(x) say. Assuming that

we also know the form of the noise, which defines thelikelihood, l(y|x), we can

use Bayes’ rule to give

π(x|y) = l(y|x)π(x)/π(y).

We callπ(x) theprior distributionandπ(x|y) theposterior distribution.

The direct analogy of the maximum likelihood principle is maximum a pos-

teriori (MAP), that is the value ofx which maximises the posterior probability

(or density); we could also use the posterior mean, that is the mean of the pos-

terior distribution.

To define the likelihood we need to consider two components, blur and noise.

In some applications the blur function is very complex, for example in the medi-

cal imaging technique of emission tomography. However, in many cases instead

of using the exact function an approximation will be used, such as a normal dis-

tribution, which will capture the gross properties of the blur. For example using

a (bivariate) normal blur

hi,j =
1

2πσ2
h

exp

{

− 1

2σ2
h

(i2 + j2)

}

.
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One way to visualise blurring, is to consider a single point of light. Without

blurring we would see this as a single point, however the blurring means that

we see it as a “disk” which is brightest in the middle. For a point source of unit

intensity, the blur or point-spread function gives the observed brightness around

the point. Also, as the variance increases, the peak brightness decreases and the

size of the disk increases.

The most commonly used noise models are Normal, e.g. to describe mea-

surement errors, and Poisson, e.g. for radioactive decay inmedical imaging:

• Normal:Y |x ∼ N(Hx, σ2I) with likelihood

l(y|x) =

m
∏

j=1

1√
2πσ2

exp

{

− 1

2σ2
(yj − µj)

2

}

whereµj =
∑

i

hi,j xi

• Poisson:Y |x ∼ Po(Hx) with likelihood

l(y|x) =
m
∏

j=1

µ
yj

j e−µj

yj!
whereµj =

∑

i

hi,j xi

As discussed earlier we shall base estimation on the posterior distribution,

that is by considering both prior information and evidence from the data. An

obvious approach is to look for the value ofx which maximises the posterior

probability, the image which is most likely given the data and our prior belief.
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Recall, however, that a typical image might be 1024 pixels by1024 pixels, so

we shall be attempting to estimate over 1 million parameters, hence it is unlikely

that standard optimisation algorithms (such as quasi-Newton or conjugate gra-

dient procedures) will work well. Instead we could adopt a procedure similar

to the simulation-based Gibbs sampler discussed in the previous section, called

theMetropolis-Hastings algorithm. (In fact for some examples where the pos-

terior conditional distribution comes from a standard family the Gibbs sampler

can be used.) Although standard maximisation approaches are unlikely to work,

other procedures for finding the MAP estimate are available,one such method

is calledsimulated annealing.

6.6 Segmentation via Simulated Annealing

The challenge in the MAP problem is that there areqrc possible image segmen-

tations (q classes possible for each pixel andrc pixels). So for a256 × 256

image, and only 2 classes, there are over10140×140 possible solutions. A pro-

posed optimization technique is simulated annealing, which is a simple idea.

LetP denote a probability distribution over a finite setX . We want to choose
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x∗ ∈ X to maximizeP (x). Suppose we consider

Pλ (x) = P (x)λ /
∑

y∈X
P (y)λ .

Then, asλ → ∞ the distributionPλ increasingly concentrates onx∗, i.e.

lim
λ→∞

Pλ (x) =















1 if x = x∗

0 otherwise.

So, if we simulate fromPλ (x) with λ large then we hope thatxλ is close tox∗.

Example.

P (1) = p

P (0) = 1 − p

Pλ (0) =
(1 − p)λ

pλ + (1 − p)λ
Pλ (1) =

pλ

pλ + (1 − p)λ

lim
λ→∞

Pλ (0) = lim
λ→∞

(1 − p)λ

pλ + (1 − p)λ
= lim

λ→∞

(

1−p
p

)λ

1 +
(

1−p
p

)λ
= 0 if 1 − p < p

= lim
λ→∞

1
(

p
1−p

)λ

+ 1

= 1 if 1 − p > p

=
2−λ

21−λ
=

1

2
if p = 1 − p = 1/2 etc.
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Now supposeP ∝ exp (−βu) is a Gibbs probability distribution. ThusPλ

corresponds to replacingβ by βλ. Since in statistical physicsβ is inversely

proportional to temperature, it is usual now to writeλ = 1/T and speak of a

decreasing temperature to0.

We now want to sample fromPλ, but there is no way to enumerate the entire

sample spaceX , so we cannot use conventional methods. A commonly used

method is an iterative one, known as the Metropolis algorithm. The following

sections are for the Ising Model, but can be generalised.

6.7 Metropolis Algorithm

Let X be{Xj , j = 1, . . . qrc}, the set of all possible image segmentations, and

let π = (πj) be a non-constant distribution overX . If we can find a transition

matrix P = [Pij] (wherePij denotes the one step transition probability fromxi

to xj) such that

πipij = πjpji ∀ i 6= j
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then theπ = (πj) is an equilibrium distribution ofP , i.e. the probability that

the system is in stateXj at a particular time point a long way from the time

origin, this being unaffected by the initial state.

An irreducibleMarkov chain is one in which all states inter-communicate.

Chooseany symmetric irreducible transition matrixQ = [qij]. When in

stateXi select a new statej from the ith row of Q. Make the transition with

probabilitymin (1, πj/πi), otherwise stay atXi.

This definesP as

pij = qij min (1, πj/πi) i 6= j

pij = qii +
∑

k

qik max (0, 1 = πk/πi) i = j.

In practice we can chooseqij = 1
rc (binary case) for all statesXj which differ

from Xi at just one site/pixel,qij = 0 for all otherXj.

Implementation. Let X andY be two realizations of a binary MRF on a pixel.

Then ifX andY differ only at one pixel, say pixelj, then

πx

πy
=

P (xj| rest) P (rest)

P (yj| rest) P (rest)
=

P (xj| rest)
P (yj| rest)
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and since these are binary(0, 1) pixels we have

πx

πy
=

P (xj|X at neighbours ofj)
P (1 − xj|X at neighbours ofj)

with P (xj = x|X at neighbours) = exT

1+eT x = 0, 1 as before, whereT is

defined after equation (1).

Metropolis algorithm for the Ising model with first-order ne ighbour-

hood

1. Choose sitek at random

2. SetR = e2β(1−2xk)(
∑

j∈N(k) xj−2)

3. GenerateU ∼ U (0, 1)

4. If R ≥ U thenxk = 1 − xk

5. Go to 1.

This can be modified to scan the pixels in a deterministic manner.
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6.8 Gibbs Sampler

This is a variant of Metropolis’ algorithm which replacemin (1, πj/πi) by πj

πi+πj
.

If we note that πx

πx+πy
= 1

1+πy/πx
, then we have

πx

πx + πy
= P (xj|X at neighbours ofj)

since

P (xj|X at neighbours ofj) + P (1 − xj|X at neighbours ofj) = 1.

This algorithm changes the colour of a pixel less often in practice.

For the Ising model with first-order neighbourhood the algorithm is then:

1. Choose a sitek at random

2. SetR = e+2β(1−xk)(
∑

j∈N(k) xj−2)
/{

1 + e+2β(
∑

j∈N(k) xj−2)
}

3. GenerateU ∼ U (0, 1)

4. If R ≥ U thenxk = 1 − xk

5. Go to 1.

Again there is also a systematic version.
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6.9 Implementation of Simulated Annealing

We give an example for the Strauss model. The distribution ofthe labels is

P (labels) ∝ exp (β# (neighbour pairs of the same label))

and for additive Gaussian noise

P (X| labels) ∝ exp



− 1

2κ

∑

pixels

(

Xij − µlij

)2





wherelij is the class label of the(i, j)th pixel,µk is the true grey-level of class

k pixels, andκ is the variance of the noise. We then have

log P (labels|X) = const− 1

2κ

∑

(

xij − µlij

)2
+ β

∑

pairs

I (same label)

whereI (same label) = 1 if pairs have same label

0 otherwise.

So we have to choose the labels to minimize:

E =
∑

pixels

(

Xij − µlij

)2 − 2βκ
∑

pixels

I (same label) .

The algorithm to find the labels is also known as a Gibbs sampler, and is similar

to that described above.
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The pixels are chosen in sequence, we replace the label for pixel(i, j) by a

sample from

P (lij|X, other labels) i.e.

P (lij = k|X, other labels) ∝ exp





−1

2κ
(Xij − µk)

2 + β
∑

neighbours

I (labelk)



 .

In the simulated annealing procedure we simulate from

Pijk ∝ exp



− λ

2κ
(Xij − µk)

2 + βλ
∑

N(i,j)

I (labelk)



 .

As the simulation continues we gradually letλ → ∞. Theory shows that the

rate of convergence that we should take to guarantee a globaloptimum isλ ∼

constlog (t) which is much too slow for practical usage. However, a fasterrate

will lead to a reasonable approximate solution.

An alternative approach, known asiterative conditional modes(ICM) is to

setλ = ∞. This corresponds to updating each pixel to maximizeP (lij = k|X, other labels).

6.10 Choice ofβ

The value ofβ will determine the smoothness of the final labelling some simple

geometric arguments can give some guidance. Suppose there are c labels and
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we use 8 neighbours.

If we have

A A A

A ? A

A A A

ThenP (? 6= A| other labels) = 1 − e8β

e8β+c−1
= c−1

c−1+e8β .

If we have

A A A

A ? B

A B B

Then

P (? = B| other labels) =
e3β

e3β + e5β + c − 2
.

For the casec = 2, if we specify the first probability to be less than 0.1% and the

second to be at least 10% this gives a plausible range ofβ as0.86 < β < 1.10.
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In the case of 4 neighbours we have

A

A ? A

A

so

P (? 6= A| other labels) =
c − 1

c − 1 + e4β

which gives a lower band forβ as twice that above. Whereas for

A

A ? B

B

P (? = A) = P (? = B) (= .5 if c = 2)

so there must be a greater acceptability of sharp corners.
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