Homework 4

Date given out: $3 / 30 / 09$. Please submit your solutions to the problems to me by 4 pm April 8 , 2009. This homework contributes 10% of the course grade.

1. Consider an image where the pixels belong to two classes, D for the dark class (e.g. background) and B for the bright class (e.g. object). Consider the continuous distribution of grey levels to be a mixture of two normal distributions $N\left(\mu_{B}, \sigma_{B}^{2}\right)$ and $N\left(\mu_{D}, \sigma_{D}^{2}\right)$ with mixture proportions π_{B} and $\pi_{D}=1-\pi_{B}$. Derive an expression for the automatic threshold t which minimizes the error:

$$
L=\pi_{B} P\left(X \leq t \mid X \sim N\left(\mu_{B}, \sigma_{B}^{2}\right)\right)+\pi_{D} P\left(X>t \mid X \sim N\left(\mu_{D}, \sigma_{D}^{2}\right)\right)
$$

where $t \in \mathbb{R}$.
Simplify your expression for $\mu_{D}=0, \mu_{B}=1, \sigma_{D}=\sigma_{B}=1$.
Simplify further for $\pi_{D}=\pi_{B}=1 / 2$.
[Hint: To minimize L differentiate with respect to t, and solve $d L / d t=0$. If $F(t)$ is the c.d.f. of distribution, then $d F(t) / d t=f(t)$, the density of the distribution.]
2. A 64×64 image with a total of four distinct grey levels $(0,1,2,3)$ has grey level frequency distribution:

grey level	frequency
0	1456
1	683
2	789
3	1168
total	4096

It is of interest to threshold the image into two classes. What is the choice of threshold that minimizes the within-group variance?
What is the choice of threshold that minimizes the Kullback-Leibler divergence where $\mu_{1}=0.5 ; \mu_{2}=2.5 ; \sigma_{1}=0.5=\sigma_{2}$.
3. Suppose that a true binary scene $S_{i j}$ has been observed with noise so that

$$
x_{i j}=S_{i j}+\epsilon_{i j}
$$

where $\epsilon_{i j} \sim N\left(0, \sigma^{2}\right)$ independently. To reconstruct the scene we threshold the image to give a binary image $y_{i j}$ by allocating $y_{i j}=1$ if $x_{i j}>1 / 2$ and $y_{i j}=0$ otherwise.
The error rate E is defined as the probability of mis-classification. Here we have

$$
E=P\left(x_{i j}>1 / 2 \text { AND } S_{i j}=0\right)+P\left(x_{i j} \leq 1 / 2 \text { AND } S_{i j}=1\right)
$$

Show that

$$
E=1-\Phi\left(\frac{1}{2 \sigma}\right)
$$

Obtain the approximate error rate after applying the 5×5 box filter to an image containing large objects.
4. [*Optional] By fitting a quadratic surface (by least squares) of the form

$$
x_{i j}=a_{1}+a_{2} i+a_{3} j+a_{4} i^{2}+a_{5} i j+a_{6} j^{2}+\varepsilon_{i j}
$$

to a 5×5 neighbourhood, verify that the filter is given by the weights:

$$
w_{i j}=\frac{1}{25}\left(1+\frac{10-5 i^{2}}{7}+\frac{10-5 j^{2}}{7}\right) \quad j=-2,-1,0,1,2, \quad i=-2,-1,0,1,2
$$

5. Using the binary image A and structuring element K below, display the resulting output image for each of the following:
(a) $A \oplus K$, (b) $A \ominus K$, (c) $A \circ K$, (d) $A \bullet K$, (e) $(A \ominus K)^{c}$, (f) $A^{c} \oplus \check{K}$.

Check whether (e) equals (f), and explain why this is to be expected.

$$
K=\begin{array}{|l|l|l|}
\hline \bullet & & \\
\hline \bullet & + & \\
\hline \bullet & \bullet & \bullet \\
\hline
\end{array}
$$

[For each image the origin is denoted by +]

