Homework 4

Date given out: 3/30/09. Please submit your solutions to the problems to me by 4pm April 8, 2009. This homework contributes 10% of the course grade.

1. Consider an image where the pixels belong to two classes, D for the dark class (e.g. background) and B for the bright class (e.g. object). Consider the continuous distribution of grey levels to be a mixture of two normal distributions $N(\mu_B, \sigma_B^2)$ and $N(\mu_D, \sigma_D^2)$ with mixture proportions π_B and $\pi_D = 1 - \pi_B$. Derive an expression for the automatic threshold t which minimizes the error:

$$L = \pi_B P(X \le t | X \sim N(\mu_B, \sigma_B^2)) + \pi_D P(X > t | X \sim N(\mu_D, \sigma_D^2)),$$

where $t \in \mathbb{R}$.

Simplify your expression for $\mu_D = 0, \mu_B = 1, \sigma_D = \sigma_B = 1$.

Simplify further for $\pi_D = \pi_B = 1/2$.

[Hint: To minimize L differentiate with respect to t, and solve dL/dt = 0. If F(t) is the c.d.f. of distribution, then dF(t)/dt = f(t), the density of the distribution.]

2. A 64×64 image with a total of four distinct grey levels (0, 1, 2, 3) has grey level frequency distribution:

grey level		frequency			
0		1456			
1		683			
2		789			
3		1168			
tc	otal	4096			

It is of interest to threshold the image into two classes. What is the choice of threshold that minimizes the within-group variance?

What is the choice of threshold that minimizes the Kullback-Leibler divergence where $\mu_1 = 0.5; \mu_2 = 2.5; \sigma_1 = 0.5 = \sigma_2.$

3. Suppose that a true binary scene S_{ij} has been observed with noise so that

$$x_{ij} = S_{ij} + \epsilon_{ij}$$

where $\epsilon_{ij} \sim N(0, \sigma^2)$ independently. To reconstruct the scene we threshold the image to give a binary image y_{ij} by allocating $y_{ij} = 1$ if $x_{ij} > 1/2$ and $y_{ij} = 0$ otherwise.

The error rate E is defined as the probability of mis-classification. Here we have

$$E = P(x_{ij} > 1/2 \text{ AND } S_{ij} = 0) + P(x_{ij} \le 1/2 \text{ AND } S_{ij} = 1).$$

Show that

$$E = 1 - \Phi(\frac{1}{2\sigma}).$$

Obtain the approximate error rate after applying the 5×5 box filter to an image containing large objects.

4. [*Optional] By fitting a quadratic surface (by least squares) of the form

$$x_{ij} = a_1 + a_2i + a_3j + a_4i^2 + a_5ij + a_6j^2 + \varepsilon_{ij}$$

to a 5×5 neighbourhood, verify that the filter is given by the weights:

$$w_{ij} = \frac{1}{25} \left(1 + \frac{10 - 5i^2}{7} + \frac{10 - 5j^2}{7}\right) \qquad j = -2, -1, 0, 1, 2, \quad i = -2, -1, 0, 1, 2$$

5. Using the binary image A and structuring element K below, display the resulting output image for each of the following:

(a) $A \oplus K$, (b) $A \ominus K$, (c) $A \circ K$, (d) $A \bullet K$, (e) $(A \ominus K)^c$, (f) $A^c \oplus \check{K}$.

Check whether (e) equals (f), and explain why this is to be expected.

		٠	•	٠	•		
A =		٠	+		•	•	
		٠	•	٠	٠	•	
		•	•		•	•	
			•	•	•	•	
				Т			
			H	_	_	_	
	K	=	•	+	-		

