Skip to Content

College of Arts & Sciences
Department of Statistics


Gabriel Terejanu Colloquium

Thursday, April 14, 2016 - 2:45pm

Statistics Department Colloquium

Where: LeConte College, Room 210

Speaker: Gabriel Terejanu

Affiliation: University of South Carolina, Department of Computer Science and Engineering

Title:  How can we ever trust extrapolative predictions?

Abstract: The ultimate purpose of most computational models is to make predictions, commonly in support of some decision-making process (e.g., for design or operation of some system). The quantities that need to be predicted (the quantities of interest or QoIs) are generally not experimentally observable before the prediction, since otherwise no prediction would be needed. Assessing the validity of such extrapolative predictions, which is critical to informed decision-making, is challenging. In classical approaches to validation, model outputs for observed quantities are compared to observations to determine if they are consistent. By itself, this consistency only ensures that the model can predict the observed quantities under the conditions of the observations. This limitation dramatically reduces the utility of the validation effort for decision making because it implies nothing about predictions of unobserved QoIs or for scenarios outside of the range of observations. This talk presents a validation and predictive assessment process that supports extrapolative predictions for models with known sources of error. The process includes stochastic modeling, calibration, validation, and predictive assessment phases where representations of known sources of uncertainty and error are built, informed, and tested. The proposed methodology is applied to an illustrative extrapolation problem involving a misspecified nonlinear oscillator.