A Bayes Rule for Subgroup Reporting – Adaptive Enrichment Designs
Peter Müller, UT Austin

1 Example: A study for targeted therapy

Slide 2

1. *A Clinical Trial of Targeted Therapies*

Clinical trial: study of targeted agents in metastatic cancers.

Patients: with metastatic cancer (thyroid, ovarian, melano, lung, breast, CRC and other)

Treatments: therapy that targets particular molecular aberrations (TT) vs. standard of care (S)

Objective: determine whether TT leads to > progression free survival (PFS)

Slide 3

Patient population: patients eligible for non-FDA approved targeted therapy
record mutations, all cancers

Population finding: heterogeneous pat population
different mutations; different cancers; basline covs ...
Treatment might be effective in a sub-population
(subgroup analysis with a purpose)

Data: Can use data from similar *observational* study to
design the trial and evaluate frequentist operating characteristics

Slide 4

Data

Different PFS under TT vs. control,

- mutations are recorded only for small numbers n of patients,
- with varying fraction of observed mutation.

Slide 5

Data (ctd.)

TT effect varies substantially by mutation

TT effect by mutation
TT effect by tumor
and by tumor type.

2 Decision problem

Slide 6

Data: response y_i (PFS), covariates $x_i = (x_{i1}, \ldots, x_{ip})$.

Actions: Report a (i.e., *one*) subgroup of patients who might most benefit from the experimental therapy:
$$a = (I, x^*)$$

Covariates: $I \subset \{1, \ldots, p\}$

Levels: $x^* = (x^*_j, j \in I)$.
Population finding: recommend subpop \(\{x_j = x_j^*, j \in I\} \)

use, e.g., in adaptive clinical trial with population finding.

Decision problem: separate inference (predicting PFS) vs. decision (report subpopulation).
- no need for multiplicity control
- arbitrary prob model
- disentangle stat significance vs. clinical relevance
- allow for variable # covs.

- other baseline covariates \(b_i\) (age, # prior therapies, etc.)

Challenges: prob model needs to allow for
- interactions of \(m_j\)
- many \(m_j\) are not recorded \(\Rightarrow\) var dimension covariate vector \(x_i = (m_{ij}, c_i, b_i)\)
- extrapolation with small # obs.

Utility: we favor a subpopulation with difference (relative to the overall population) in log hazards ratio (LR), large size and parsimonious description with few covariates

\[
u(a, \theta) = (LR(a, \theta) - \beta) \cdot \frac{n(a)^\alpha}{(|I| + 1)^\gamma}
\]

with \(\beta > 0\) a fixed clinically decided threshold and \(n(a)\) is the size of the subpopulation.
\(\theta\) indexes the sampling model (any model for \(p(y \mid x, \theta)\))

Alternative utility: Foster, Taylor & Ruberg (2011, StatMed) use

\[
Q(A) = \text{enhanced treatment effect} - \text{average trt effect}
\]

and sensitivity and specificity to evaluate a reported subpopulation \(A\).

Model: Decision problem and solution remain meaningful for any model.

For example, we use the following.

Slide 7

Slide 8

3. Probability Model

Flexible nonparametric Bayesian model.

Variables: for each patient \(i = 1, \ldots, n\)
- Outcome \(y_i\) PFS;
- Covariates \(x_i = (c_i, m_i, b_i)\)
 - tumor type \(c_i \in \{1, \ldots, C\}\) (categorical)
 - molecular aberrations \(m_i = (m_{i1}, \ldots, m_{iM})\)
 with \(m_{ia} = 1\) for observed aberration,
 \(m_{ia} = -1\) for not observed (and 0 for n/a).

Random Partition

\(s = (s_1, \ldots, s_n) = \text{cluster membership indicators}\)
\(s_i \in \{1, \ldots, J\}\).

Let \(y_j^*\) and \(x_j^*\) variables by cluster and \(S_j = \{i : s_i = j\}\).

Random partition: favor clusters homogeneous in \(x_i\)

\[
p(s \mid x) \propto \prod_{j=1}^{J} c(S_j) \ g(x_j^*)
\]

with \(g(x_j^*)\) scoring “similarity” of \(x_j^* = (x_i; i \in S_j)\).

Sampling model: exchangeable within clusters

\[
p(y \mid s, x, \eta) = \prod_{j=1}^{J} \prod_{i \in S_j} p(y_i \mid \eta_j)
\]

Prediction: future patient \(i = n + 1\) is
- matched with one of the earlier clusters, on the basis of similar covariates \(x_i = (c_i, m_i, b_i, z_i)\).
- predict similar PFS. That’s all!

Slide 9

Random Partition

\(s = (s_1, \ldots, s_n) = \text{cluster membership indicators}\)
\(s_i \in \{1, \ldots, J\}\).

Let \(y_j^*\) and \(x_j^*\) variables by cluster and \(S_j = \{i : s_i = j\}\).

Random partition: favor clusters homogeneous in \(x_i\)

\[
p(s \mid x) \propto \prod_{j=1}^{J} c(S_j) \ g(x_j^*)
\]

with \(g(x_j^*)\) scoring “similarity” of \(x_j^* = (x_i; i \in S_j)\).

Sampling model: exchangeable within clusters

\[
p(y \mid s, x, \eta) = \prod_{j=1}^{J} \prod_{i \in S_j} p(y_i \mid \eta_j)
\]

Prediction: future patient \(i = n + 1\) is
- matched with one of the earlier clusters, on the basis of similar covariates \(x_i = (c_i, m_i, b_i, z_i)\).
- predict similar PFS. That’s all!

Slide 10

Probability model with

Random partition: includes a regression on covariates, through \(g(x_j^*)\)

Variable size regression: Cluster allocation is possible with available (subset of) covariates -- no problem with variable size cov vector.

Extrapolation: restricted to matching with observed patients
4 Simulation

Scenarios: 7 scenarios, \(p = 8 \) covariates (7 mutations, 1 cancer type).
Simulation truth is a log normal regression for \(y_i \in \mathbb{R} \).

True subgroups: Evaluation of (frequentist) error rates requires “true” subgroups.
Defined as a function of the assumed sampling model.

- Evaluate \(u(a, \cdot) \) under the simulation truth using the true log hazards ratios for a subgroup \(a \).
- Repeat for all poss subgroups.
- The top 10 subgroups are labeled as “truth”

Results: next slide.

Slide 12

Operating Characteristics: Error Rates

- \(\text{TIE} = p(H_0^c | H_0) \) type-I error
- \(\text{FNR} = p(H_0 | H_1^c) \) false negative rate
- \(\text{TPR} = p(H_1 | H_1) \) true positive r.
- \(\text{FSR} = p(H_a | H_a^c) \) false subgroup r.
- \(\text{TSR} = p(H_a | H_a) \) true subgroup r.
- \(\text{FPR} = p(H_1 | H_a) \) false positive r.

Decision	\(H_0 \)	\(H_1 \)	\(M_{ih} \)	\(FPR_{ih} \)
\(H_0 \) | 1-TIE | \(\text{TSR}_{ih} \) | \(\text{FSR} \) | \(\text{TPR} \)
\(H_1 \) | \(\text{FPR}_{ih} \) | \(\text{TPR} \)

- Choose \(c_0 \) to control TIE, and \(c_1 \) to control (average) FSR.
- All but the TIE require additional specification:
 - effect size for FNR, TPR and FSR.
 - TSR and FPR depend on \(i, h \).

Slide 13

Simulation results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>TIE</th>
<th>FNR</th>
<th>TPR</th>
<th>FSR</th>
<th>TSR</th>
<th>FPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.00</td>
<td>-</td>
<td>.06</td>
<td>.92</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.00</td>
<td>.04</td>
<td>.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3*</td>
<td>.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-.01</td>
<td>.94</td>
<td>.05</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.03</td>
<td>-</td>
<td>.23</td>
<td>.75</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.01</td>
<td>-</td>
<td>.12</td>
<td>.87</td>
<td>.02</td>
<td></td>
</tr>
</tbody>
</table>

* scenario 3 is true \(H_0 \)
all others are true subgroup and overall effects

Slide 14

Treatment Allocation

| Scenario | \(AP_{trt} \) | \(AP_{ctrl} \) | \(d \)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.92</td>
<td>.85</td>
<td>-.11</td>
</tr>
<tr>
<td>2</td>
<td>.91</td>
<td>.81</td>
<td>-.13</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>.83</td>
<td>.73</td>
<td>-.18</td>
</tr>
</tbody>
</table>

\(AP_t = \text{prob of correct assignment to TT} \)
\(AP_c = \text{prob of correct assignment to C} \)
\(d = \text{bias in estimating succ probs} \)

5 Multiple Subgroups

5. Multiple Subgroups

Action set: generalize to a subgroup report with multiple subsets

\(a = \{a_d, d = 1, \ldots, D\} \) with \(a_d = (I_d, x^*_d) \),

- Covariates: \(I_d \subset \{1, \ldots, p\} \)
- Levels: \(x^*_d = (x^*_{dj}, j \in I_d) \).

Utility function: favor subgroups with distinct prediction, large size and parsimonious description:

\[u(a, \theta) = \prod_d \left\{ \text{LR}(a_d, \theta) - \beta \right\} \cdot \frac{n(a_d)}{(|I_d| + 1)^\gamma} \]

Slide 16

Example: Large ICD study

Study: Large study of implantable cardioverter defibrillators (ICD), to reduce the risk of sudden cardiac death.

Outcome: overall survival

Covariates:

- AGE, coded as age < 65 vs. \(\geq 65 \)
- ISCH, presence of ischemia
• EFCAT, ejection fraction, coded as < 30 versus ≥ 30
• QRS, coded as $\text{QRS} < 120$ vs. ≥ 120
• MALE
• NYHA, NY heart association class (III vs. IV)

Slide 17

Results: The Bayes rule subgroup report

<table>
<thead>
<tr>
<th>AGE</th>
<th>MALE</th>
<th>NYHA</th>
<th>EFCAT</th>
<th>MI</th>
<th>QRS</th>
<th>ISCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Slide 18

Computation

Single subset: with moderate p, use full enumeration and posterior MCMC to evaluate expected utilities.

Multiple covariates: use inhomogeneous MCMC (variation of simulated annealing).

Slide 19

Summary

• A Bayesian approach to pre-planned subgroup analysis with a sensible strategy to detect subgroup effects.

• Bayes rule (approx)

• Coherent posterior probabilities for subgroup effects.

• Multiplicity control is achieved by
 – choice of priors,
 – by controlling frequentist error rate.

• Report ≥ 1 subgroup effects (under Bayes rule)

Design: use inference on subgroups for population finding or enrichment design.