1. Suppose that **A** is an $n \times n$ symmetric matrix. Prove that **A** is idempotent if and only if $r(\mathbf{A}) + r(\mathbf{I} - \mathbf{A}) = n$.

2. Let **P** and **A** be $n \times n$ matrices. Define **D** = **P'AP**. Show that if **A** is nnd, then so is **D**.

3. Consider the matrix

$$\mathbf{A} = \left(\begin{array}{rrrr} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 3 \end{array}\right).$$

(a) Show that A is pd.

(b) Compute $\mathbf{A}^{1/2}$, the symmetric square root of \mathbf{A} . Check your work by showing that $\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{A}$.

4. Suppose that $\mathbf{A}_{n \times n}$ is a symmetric with eigenvalues $\lambda_{(1)} < \lambda_{(2)} < \cdots < \lambda_{(n)}$. Prove that

$$\sup_{\mathbf{x}\neq\mathbf{0}}\frac{\mathbf{x}'\mathbf{A}\mathbf{x}}{\mathbf{x}'\mathbf{x}}=\lambda_{(n)}.$$

- 5. Prove that if a matrix \mathbf{A} is pd, then \mathbf{A}^{-1} is also pd.
- 6. Define

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right).$$

Suppose that **M** is the perpendicular projection matrix onto $\mathcal{C}(\mathbf{A})$. Find $r(\mathbf{M})$ and $tr(\mathbf{M})$.

7. Suppose that $\mathbf{Y} = (Y_1, Y_2, Y_3)'$ has mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ given by

$$\boldsymbol{\mu} = \begin{pmatrix} 4\\ 6\\ 10 \end{pmatrix} \quad \text{and} \quad \boldsymbol{\Sigma} = \begin{pmatrix} 8 & 5 & 0\\ 5 & 12 & 4\\ 0 & 4 & 9 \end{pmatrix}.$$

(a) Find the mean and variance of $Z = Y_1 - Y_2 + Y_3$. (b) Let

$$\mathbf{A} = \begin{pmatrix} 3 & 5 & 4 \\ 1 & 2 & 8 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}.$$

Find $E(\mathbf{AY} + \mathbf{b})$ and $cov(\mathbf{AY} + \mathbf{b})$.

8. Suppose that $\mathbf{Y} = (Y_1, Y_2, ..., Y_n)'$ is a random vector with covariance matrix $\boldsymbol{\Sigma} = \text{cov}(\mathbf{Y})$, and let **a** and **b** be conformable vectors of constants. Prove that

$$\operatorname{cov}(\mathbf{a}'\mathbf{Y},\mathbf{b}'\mathbf{Y}) = \mathbf{a}'\mathbf{\Sigma}\mathbf{b}.$$

9. Suppose that $\mathbf{Y}_{n \times 1}$ and $\mathbf{X}_{k \times 1}$ are random vectors. Define $\mathbf{Z} = \mathbf{Y} - E(\mathbf{Y}|\mathbf{X})$. Show that \mathbf{Z} and \mathbf{X} are uncorrelated.

10. Suppose that **Y** and **X** are random vectors with means $\mu_{\mathbf{Y}}$ and $\mu_{\mathbf{X}}$, respectively, variance matrices $\Sigma_{\mathbf{Y}}$ and $\Sigma_{\mathbf{X}}$, respectively, and covariance matrix $\Sigma_{\mathbf{YX}}$. Assume that $\Sigma_{\mathbf{X}}$ is nonsingular. Define

$$\mathbf{W} = \boldsymbol{\mu}_{\mathbf{Y}} + \boldsymbol{\Sigma}_{\mathbf{Y}\mathbf{X}}\boldsymbol{\Sigma}_{\mathbf{X}}^{-1}(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})$$

and $\mathbf{Z} = \mathbf{Y} - \mathbf{W}$. Derive $\operatorname{cov}(\mathbf{Z})$ and show that $\operatorname{cov}(\mathbf{Z}) \leq_{\mathrm{pd}} \Sigma_{\mathbf{Y}}$, with equality when $\Sigma_{\mathbf{YX}} = \mathbf{0}$.

11. Consider the mixed-effects linear model

$$\mathbf{Y}_{n\times 1} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_1\boldsymbol{\epsilon}_1 + \boldsymbol{\epsilon}_2,$$

where **X** is $n \times p$, β is $p \times 1$, ϵ_1 has mean vector $\mathbf{0}_{r \times 1}$ and variance-covariance matrix Σ_1 , and ϵ_2 has mean vector $\mathbf{0}_{n \times 1}$ and variance-covariance matrix $\sigma^2 \mathbf{I}_n$. Also, assume that ϵ_1 and ϵ_2 are uncorrelated.

(a) Compute $cov(\mathbf{Y})$.

(b) (\uparrow) Specialize to the **one-factor random-effects model**

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij},$$

for i = 1, 2, 3 and j = 1, 2, where $\alpha_1, \alpha_2, \alpha_3$ are iid $\mathcal{N}(0, \sigma_{\alpha}^2)$, ϵ_{ij} are iid $\mathcal{N}(0, \sigma^2)$, and the α_i 's and ϵ_{ij} 's are mutually independent. Put this model into the form $\mathbf{Y}_{n \times 1} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_1\boldsymbol{\epsilon}_1 + \boldsymbol{\epsilon}_2$, and compute $\operatorname{cov}(\mathbf{Y})$.