1. Suppose that \mathbf{A} is an $n \times n$ symmetric matrix. Prove that \mathbf{A} is idempotent if and only if $r(\mathbf{A})+r(\mathbf{I}-\mathbf{A})=n$.
2. Let \mathbf{P} and \mathbf{A} be $n \times n$ matrices. Define $\mathbf{D}=\mathbf{P}^{\prime} \mathbf{A P}$. Show that if \mathbf{A} is nnd, then so is \mathbf{D}.
3. Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
-1 & -1 & 3
\end{array}\right)
$$

(a) Show that \mathbf{A} is pd.
(b) Compute $\mathbf{A}^{1 / 2}$, the symmetric square root of \mathbf{A}. Check your work by showing that $\mathbf{A}^{1 / 2} \mathbf{A}^{1 / 2}=\mathbf{A}$.
4. Suppose that $\mathbf{A}_{n \times n}$ is a symmetric with eigenvalues $\lambda_{(1)}<\lambda_{(2)}<\cdots<\lambda_{(n)}$. Prove that

$$
\sup _{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\prime} \mathbf{x}}=\lambda_{(n)} .
$$

5. Prove that if a matrix \mathbf{A} is pd , then \mathbf{A}^{-1} is also pd.
6. Define

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
1 & 1 & 0
\end{array}\right)
$$

Suppose that \mathbf{M} is the perpendicular projection matrix onto $\mathcal{C}(\mathbf{A})$. Find $r(\mathbf{M})$ and $\operatorname{tr}(\mathbf{M})$.
7. Suppose that $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{\prime}$ has mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ given by

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
4 \\
6 \\
10
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Sigma}=\left(\begin{array}{ccc}
8 & 5 & 0 \\
5 & 12 & 4 \\
0 & 4 & 9
\end{array}\right)
$$

(a) Find the mean and variance of $Z=Y_{1}-Y_{2}+Y_{3}$.
(b) Let

$$
\mathbf{A}=\left(\begin{array}{lll}
3 & 5 & 4 \\
1 & 2 & 8
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\binom{-1}{2}
$$

Find $E(\mathbf{A Y}+\mathbf{b})$ and $\operatorname{cov}(\mathbf{A Y}+\mathbf{b})$.
8. Suppose that $\mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{\prime}$ is a random vector with covariance matrix $\boldsymbol{\Sigma}=$ $\operatorname{cov}(\mathbf{Y})$, and let \mathbf{a} and \mathbf{b} be conformable vectors of constants. Prove that

$$
\operatorname{cov}\left(\mathbf{a}^{\prime} \mathbf{Y}, \mathbf{b}^{\prime} \mathbf{Y}\right)=\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{b}
$$

9. Suppose that $\mathbf{Y}_{n \times 1}$ and $\mathbf{X}_{k \times 1}$ are random vectors. Define $\mathbf{Z}=\mathbf{Y}-E(\mathbf{Y} \mid \mathbf{X})$. Show that \mathbf{Z} and \mathbf{X} are uncorrelated.
10. Suppose that \mathbf{Y} and \mathbf{X} are random vectors with means $\boldsymbol{\mu}_{\mathbf{Y}}$ and $\boldsymbol{\mu}_{\mathbf{X}}$, respectively, variance matrices $\boldsymbol{\Sigma}_{\mathbf{Y}}$ and $\boldsymbol{\Sigma}_{\mathbf{X}}$, respectively, and covariance matrix $\boldsymbol{\Sigma}_{\mathbf{Y X}}$. Assume that $\Sigma_{\mathbf{X}}$ is nonsingular. Define

$$
\mathbf{W}=\boldsymbol{\mu}_{\mathbf{Y}}+\Sigma_{\mathbf{Y X}} \Sigma_{\mathbf{X}}^{-1}\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)
$$

and $\mathbf{Z}=\mathbf{Y}-\mathbf{W}$. Derive $\operatorname{cov}(\mathbf{Z})$ and show that $\operatorname{cov}(\mathbf{Z}) \leq_{\mathrm{pd}} \boldsymbol{\Sigma}_{\mathbf{Y}}$, with equality when $\Sigma_{Y X}=0$.
11. Consider the mixed-effects linear model

$$
\mathbf{Y}_{n \times 1}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z}_{1} \boldsymbol{\epsilon}_{1}+\boldsymbol{\epsilon}_{2},
$$

where \mathbf{X} is $n \times p, \boldsymbol{\beta}$ is $p \times 1, \boldsymbol{\epsilon}_{1}$ has mean vector $\mathbf{0}_{r \times 1}$ and variance-covariance matrix $\boldsymbol{\Sigma}_{1}$, and $\boldsymbol{\epsilon}_{2}$ has mean vector $\mathbf{0}_{n \times 1}$ and variance-covariance matrix $\sigma^{2} \mathbf{I}_{n}$. Also, assume that $\boldsymbol{\epsilon}_{1}$ and $\boldsymbol{\epsilon}_{2}$ are uncorrelated.
(a) Compute $\operatorname{cov}(\mathbf{Y})$.
(b) (\uparrow) Specialize to the one-factor random-effects model

$$
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j},
$$

for $i=1,2,3$ and $j=1,2$, where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are iid $\mathcal{N}\left(0, \sigma_{\alpha}^{2}\right), \epsilon_{i j}$ are iid $\mathcal{N}\left(0, \sigma^{2}\right)$, and the α_{i} 's and $\epsilon_{i j}$'s are mutually independent. Put this model into the form $\mathbf{Y}_{n \times 1}=$ $\mathbf{X} \boldsymbol{\beta}+\mathbf{Z}_{1} \boldsymbol{\epsilon}_{1}+\boldsymbol{\epsilon}_{2}$, and compute $\operatorname{cov}(\mathbf{Y})$.

