1. Define the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

(a) Find two generalized inverses of **A**.

(b) Find a matrix which projects onto $\mathcal{C}(\mathbf{A})$.

(c) Find a matrix which projects onto $\mathcal{C}(\mathbf{A})^{\perp}$, the orthogonal complement of $\mathcal{C}(\mathbf{A})$.

2. Show that if \mathbf{A}^- is a generalized inverse of \mathbf{A} , then so is

$$\mathbf{G} = \mathbf{A}^{-}\mathbf{A}\mathbf{A}^{-} + (\mathbf{I} - \mathbf{A}^{-}\mathbf{A})\mathbf{B}_{1} + \mathbf{B}_{2}(\mathbf{I} - \mathbf{A}\mathbf{A}^{-}),$$

for any choices of \mathbf{B}_1 and \mathbf{B}_2 with conformable dimensions.

3. Let $\mathbf{A}_{n \times p}$, $\mathbf{b}_{p \times 1}$, $\mathbf{c}_{n \times 1}$, and suppose that the equations $\mathbf{A}\mathbf{b} = \mathbf{c}$ are consistent. Let $\mathbf{x}_{n \times 1}$, $\mathbf{u}_{p \times 1}$, and $\mathbf{X}_{p \times n}$. Let \mathbf{A}_1^- and \mathbf{A}_2^- be two generalized inverses of \mathbf{A} . Let \mathbf{I} denote the $n \times n$ identity matrix.

(a) Let \mathbf{b}^* be a solution to $\mathbf{A}\mathbf{b} = \mathbf{c}$. Show that $\mathbf{b}^* + \mathbf{u}\mathbf{c}'\{(\mathbf{A}_1^-)'\mathbf{A}' - \mathbf{I}\}\mathbf{x}$ is also a solution. (b) Show that $\mathbf{A}_1^- + \mathbf{X}(\mathbf{A}\mathbf{A}_2^- - \mathbf{I})$ is a generalized inverse of \mathbf{A} .

4. Suppose the system $\mathbf{A}\mathbf{x} = \mathbf{c}$ is consistent and that \mathbf{G} is a generalized inverse of \mathbf{A} .

(a) What is a particular solution to the system? the general solution?

(b) If **A** is symmetric, prove that $\frac{1}{2}(\mathbf{G} + \mathbf{G}')$ is a generalized inverse of **A**.

(c) Prove that the generalized inverse in (b) is symmetric. This shows that there does exist a generalized inverse of **A**, **A** symmetric, that is symmetric itself.

5. Suppose that \mathbf{A} , \mathbf{B} , and $\mathbf{A} + \mathbf{B}$ are all idempotent. Prove that $\mathbf{AB} = \mathbf{0}$ and $\mathbf{BA} = \mathbf{0}$.

6. Let **P** be an $n \times n$ orthogonal matrix and let **A** be an $n \times n$ symmetric and idempotent matrix. Define **D** = **P**'**AP**. Show that **D** is a perpendicular projection matrix.

7. Consider the linear model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with

$$\mathbf{Y} = \begin{pmatrix} 1\\ -1\\ 2\\ 0 \end{pmatrix} \quad \text{and} \quad \mathbf{X} = \begin{pmatrix} 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 1 & 0\\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Note that $r(\mathbf{X}) = 3$. Find $\hat{\boldsymbol{\beta}}_1$ and $\hat{\boldsymbol{\beta}}_2$, two different solutions to the normal equations $\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{Y}$. With your solutions, show that $\mathbf{X}\hat{\boldsymbol{\beta}}_1 = \mathbf{X}\hat{\boldsymbol{\beta}}_2 \in \mathcal{C}(\mathbf{X})$. Also show that $\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_1 = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_2 \in \mathcal{N}(\mathbf{X}')$.

8. Let \mathbf{M}_1 and \mathbf{M}_2 be perpendicular projection matrices on \mathcal{R}^n . Prove that $\mathbf{M}_1 + \mathbf{M}_2$ is the perpendicular projection matrix onto $\mathcal{C}(\mathbf{M}_1, \mathbf{M}_2)$ if and only if $\mathcal{C}(\mathbf{M}_1) \perp \mathcal{C}(\mathbf{M}_2)$.

9. Let **M** be the perpendicular projection matrix onto $C(\mathbf{X})$. Suppose that $\mathbf{a} \in C(\mathbf{X})$. Show that $(\mathbf{M} - \mathbf{a}\mathbf{a}')'(\mathbf{M} - \mathbf{a}\mathbf{a}') = \mathbf{M} + (\mathbf{a}'\mathbf{a} - 2)\mathbf{a}\mathbf{a}'$.

10. Suppose that \mathbf{M}_1 and \mathbf{M}_2 are symmetric, that $\mathcal{C}(\mathbf{M}_1) \perp \mathcal{C}(\mathbf{M}_2)$, and that $\mathbf{M}_1 + \mathbf{M}_2$ is the perpendicular projection matrix. Prove that \mathbf{M}_1 and \mathbf{M}_2 are also perpendicular projection matrices.

11. Let \mathbf{M} and \mathbf{M}_0 be perpendicular projection matrices with $\mathcal{C}(\mathbf{M}_0) \subset \mathcal{C}(\mathbf{M})$. Show that $\mathbf{M} - \mathbf{M}_0$ is a perpendicular projection matrix.

 $DEFINITION\colon \text{Let}\ \mathcal V$ denote an arbitrary vector space and let $\mathcal S$ denote a subspace of $\mathcal V.$ Define

$$\mathcal{S}_{\mathcal{V}}^{\perp} = \{ \mathbf{y} \in \mathcal{V} : \mathbf{y} \perp \mathcal{S} \}.$$

The subspace $S_{\mathcal{V}}^{\perp}$ is called the **orthogonal complement of** S with respect to \mathcal{V} . If $\mathcal{V} = \mathcal{R}^n$, then $S_{\mathcal{V}}^{\perp} \equiv S^{\perp}$; in this situation, we call S^{\perp} and S simply "orthogonal complements" because it is understood that the larger vector space is \mathcal{R}^n . However, there is nothing to prevent \mathcal{V} from being a subspace of \mathcal{R}^n .

12. Let \mathbf{M} and \mathbf{M}_0 be perpendicular projection matrices with $\mathcal{C}(\mathbf{M}_0) \subset \mathcal{C}(\mathbf{M})$. Show that $\mathcal{C}(\mathbf{M} - \mathbf{M}_0) = \mathcal{C}(\mathbf{M}_0)_{\mathcal{C}(\mathbf{M})}^{\perp}$, the orthogonal complement of $\mathcal{C}(\mathbf{M}_0)$ with respect to $\mathcal{C}(\mathbf{M})$.