1. For any matrix $\mathbf{A}$, prove that $\mathcal{R}\left(\mathbf{A}^{\prime} \mathbf{A}\right)=\mathcal{R}(\mathbf{A})$.
2. Define the matrix

$$
\mathbf{A}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

(a) Find $\mathcal{C}(\mathbf{A})$ and a basis for this space.
(b) Find $\mathcal{N}\left(\mathbf{A}^{\prime}\right)$ and a basis for this space.
3. In discussing the problem of calculating frequencies for different relatives, of pairs of genotypes at a single two-allele locus, one uses two matrices of conditional probabilities. They are

$$
\mathbf{P}=\left[\begin{array}{ccc}
p^{2} & 2 p q & q^{2} \\
p^{2} & 2 p q & q^{2} \\
p^{2} & 2 p q & q^{2}
\end{array}\right] \quad \text { and } \quad \mathbf{T}=\left[\begin{array}{ccc}
p & q & 0 \\
\frac{1}{2} p & \frac{1}{2} & \frac{1}{2} q \\
0 & p & q
\end{array}\right]
$$

$\mathbf{P}$ for when the relatives have no genes identical by descent and $\mathbf{T}$ for when they have one gene identical by descent. With $p+q=1, \mathbf{j}^{\prime}=(1,1,1)$, and $\mathbf{S}=\frac{1}{4} \mathbf{I}_{3}+\frac{1}{2} \mathbf{T}+\frac{1}{4} \mathbf{P}$, show that
(a) $\mathbf{P j}=\mathbf{j}$
(b) $\mathbf{T}^{2}=\frac{1}{2}(\mathbf{P}+\mathbf{T})$
(c) $\mathbf{P}^{2}=\mathbf{P}$
(d) $\mathbf{T}^{n}=\mathbf{P}+\left(\frac{1}{2}\right)^{n-1}(\mathbf{T}-\mathbf{P})$, for all $n \geq 1$
(e) $\mathbf{S}^{2}=\frac{1}{16}\left(\mathbf{I}_{3}+6 \mathbf{T}+9 \mathbf{P}\right)$.
4. Let $\mathbf{I}_{n}$ denote the $n \times n$ identity matrix and $\mathbf{J}_{n}$ denote the $n \times n$ matrix, each of whose entries is 1 . For $p \neq 0$ and $p+n q \neq 0$, show that

$$
\left(p \mathbf{I}_{n}+q \mathbf{J}_{n}\right)^{-1}=p^{-1}\left(\mathbf{I}_{n}-\frac{q}{p+n q} \mathbf{J}_{n}\right) .
$$

5. Let $\mathbf{X}$ be an $n \times p$ matrix. Assuming that $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ exists, define $\mathbf{M}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$. Show that $\mathbf{M}$ is a symmetric and that $\mathbf{M}^{2}=\mathbf{M}$. In addition, show that $\mathbf{M X}=\mathbf{X}$ and that $\mathcal{C}(\mathbf{M})=\mathcal{C}(\mathbf{X})$.
6. Suppose that $\mathcal{V}$ is vector space, and that $\mathcal{S}_{1}$ and $\mathcal{S}_{2}$ are both subspaces of $\mathcal{V}$. Define

$$
\mathcal{S}_{1} \cap \mathcal{S}_{2}=\left\{\mathbf{v} \in \mathcal{V}: \mathbf{v} \in \mathcal{S}_{1} \text { and } \mathbf{v} \in \mathcal{S}_{2}\right\}
$$

Show that $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ is also a subspace of $\mathcal{V}$.
7. Define the matrix

$$
\mathbf{A}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

(a) Give a matrix whose column space contains $\mathcal{C}(\mathbf{A})$.
(b) Does A have linearly independent columns? Explain.
(c) Give a basis for the space spanned by the columns of $\mathbf{A}$.
(d) Find $\operatorname{rank}(\mathbf{A})$.
(e) Are the columns of A mutually orthogonal? Explain.
(f) Find $\mathcal{N}\left(\mathbf{A}^{\prime}\right)$ and a basis for this space.
8. Prove that $\mathcal{C}(\mathbf{B}) \subseteq \mathcal{C}(\mathbf{A})$ if and only if $\mathbf{A C}=\mathbf{B}$ for some matrix $\mathbf{C}$.
9. Suppose that $\mathcal{V}$ is a vector space and that $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in \mathcal{V}$.
(a) Prove that the set of all linear combinations of $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}$; i.e.,

$$
\mathcal{S}=\left\{\mathbf{x} \in \mathcal{V}: \mathbf{x}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}\right\}
$$

is a subspace of $\mathcal{V}$.
(b) Does $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\}$ form a basis for $\mathcal{S}$ ? If so, prove it. If not, provide a counterexample.
10. Define the matrix $\mathbf{A}$ by

$$
\mathbf{A}=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(a) Find a basis for $\mathcal{C}(\mathbf{A})$.
(b) Find a vector $\mathbf{c} \neq \mathbf{0}$ such that $\mathbf{A c}=\mathbf{0}$.
(c) Find a matrix $\mathbf{B}$ whose column space contains $\mathcal{C}(\mathbf{A})$.
(d) Find the orthogonal complement of $\mathcal{C}(\mathbf{A})$.
11. Let $\mathcal{S}_{1}$ and $\mathcal{S}_{2}$ be orthogonal complements in $\mathcal{R}^{m}$. Is it true that every vector in $\mathcal{R}^{m}$ is either in $\mathcal{S}_{1}$ or $\mathcal{S}_{2}$ ? If so, prove it. If not, give a counterexample.

