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Hierarchical Models with Predictors

▶ Hierarchical regression models allow us to account for the
grouping structure present in hierarchical data, but allow
involve predictor variables that can help us improve predictive
accuracy.

▶ We will focus on the Cherry Blossom Road Race data we have
seen before.

▶ In Chapter 15, we used a “complete-data” normal regression
model that related net race time and age, which did not
account for the grouping structure, and it seemed to not
reflect the true nature of the way race time depends on age.

▶ We now present a couple of more complicated models that
account for the hierarchical structure of the data.
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Hierarchical Model with Varying Intercepts

▶ This model allows each group (each runner, in this example)
to have its own intercept β0j , j = 1, . . . , n:

Yij |β0j , β1, σy ∼ N(µij , σ
2
y ) where µij = β0j + β1Xij .

▶ In this model, we assume the slopes of the group-specific
regression equations are the same across groups: β1.

▶ In our example, the regression lines for the various runners,
when plotted on a graph, are parallel lines.

▶ The intercepts of the runner-specific regression lines are
different, reflecting the fact that some runners are faster
overall and some runners are slower.

▶ The rate at which runners’ expected times change as they age
is assumed to be the same across runners (may not reflect
reality).
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Parameters in this Model

▶ β0j is the group-specific intercept for runner j

▶ β1 is the global coefficient of age

▶ σy is the measure of within-group variability.

▶ σy measures how spread out are the race times for a runner
above or below his/her true regression line.

▶ This spread of “error terms” is assumed to be the same for all
runners.
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Layer 2 of Model with Varying Intercepts

▶ The second layer of the model gives the distribution of the
β0j ’s:

β0j |β0, σ0
ind∼ N(β0, σ

2
0)

▶ β0 is the global average intercept across all runners.

▶ σ0 is between-group variability in intercepts β0j , which
measures the amount of variation in baseline speeds from
runner to runner (how vertically separated the runner-specific
regression lines are on the graph).
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Model with All Priors

▶ Finally, we put priors on the parameters in the usual way:

Yij |β0j , β1, σy ∼ N(µij , σ
2
y )

with µij = β0j + β1Xij (regression model
WITHIN runner j)

β0j |β0, σ0
ind∼ N(β0, σ

2
0)

(variability in baseline speeds BETWEEN runners)
(priors on global parameters:)

β0c ∼ N(m0, s
2
0 )

β1 ∼ N(m1, s
2
1 )

σy ∼ Exp(ly )
σ0 ∼ Exp(l0).
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Estimating the Model

▶ We can simulate from the posteriors and estimate the model
using the stan glmer function in the rstanarm package (see
R example).

▶ Note the 80% credible interval for β1 is (1.02, 1.58).

▶ All positive values in the credible interval, which implies that
runners slow down on average as they age.

▶ In the complete pooling model, recall the credible interval for
β1 included 0, which didn’t make sense.
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Variation among Runners

▶ We can also display the variation in intercepts among the
runners.

▶ For example, compare runners 4 and 5 via the credible
intervals for their β0j values, and plots of posterior draws of
their estimated regression lines.

▶ We see runner 4 is slower than runner 5.

▶ We can plot the runner-specific models for all 36 runners (see
R plot).
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Examining Sources of Variability

▶ Comparing σy and σ0 tells us about how much of the overall
variation in race times is due to differences between runners
(as opposed to differences in race times within the same
runner).

▶ Our estimate of σ0 is 13.3 and our estimate of σy is 5.25.

▶
13.32

13.32 + 5.252
= 0.867, so 86.7% of the variation in race

times is due to variation between runners.
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Hierarchical Model with Varying Intercepts and Slopes

▶ The model we just fit assumed the slopes of each runner’s
regression line (which measures the rate at which race time
changes with age, on average) is the same for each runner.

▶ This likely does not reflect reality: Some runners worsen
quickly as they age, others worsen gradually as they age, and
some even improve with age! (See R plots)

▶ The Varying Intercepts and Slopes Model allows each
runner to have a different intercept β0j and a different slope
β1j .
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Varying Intercepts and Slopes Model

The formal model is a bit complicated:

Yij |β0j , β1j , σy ∼ N(µij , σ
2
y ) where µij = β0j + β1jXij(

β0j
β1j

)
|β0, β1, σ0, σ1 ∼ N

((
β0
β1

)
, Σ

)
β0c ∼ N(100, 102)
β1 ∼ N(2.5, 12)
σy ∼ Exp(0.072)
Σ ∼ (decomposition of covariance).
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Covariance Matrix of the β’s

▶ The values in the covariance matrix Σ measure the variances
and the covariance between the regression parameters β0 and
β1.

▶ If β0 and β1 have a strong correlation, then runners who are
especially fast (low β0) or slow (high β0) tend to have a strong
effect of age on race time (very negative or very positive β1).

▶ The precise interpretation of such a correlation would depend
on the sign of β1.
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Variance Components of the β’s

▶ The variance components in Σ measure the relative
proportion of this variability between groups that’s due to
differing intercepts vs differing slopes:

π0 =
σ2
0

σ2
0 + σ2

1

vs π1 =
σ2
1

σ2
0 + σ2

1

▶ If the first fraction is large, that means that most of the
variation among the runner’s regression lines is due to the
differences in intercepts.

▶ If the second fraction is large, that means that most of the
variation among the runner’s regression lines is due to the
differences in slopes (aging trends).
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Posterior Simulation

▶ The posterior analysis is again done using stan glmer.

▶ There are 78 parameters, so it is slow.

▶ The posterior median model is similar to the one for the
random intercepts model: Ŷ = 18.5 + 1.32× age

▶ The advantage of this model is seen when we examine the
runner-specific models with the different β0j and β1j
parameters (see R examples and plots of runner-specific lines).
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Plots for Two Example Runners
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Shrinkage in this Model

▶ We see (examine the plots just for runners 1 and 10) that the
runner’s trend line from the no-pooling model (blue line) is
shrunk toward the OVERALL regression line from the
complete-pooling model (solid black line) to produce the
runner’s estimated regression line from the partial-pooling
model (dashed black line).

▶ The assumption is that information from the other runners
(which is carried in the overall complete-pooled regression
line) should inform the estimated regression line for runner j .

▶ The hierarchical model assumes the data for a single runner
(especially if there are few data points for that runner) don’t
tell the whole story about that runner’s true trend line.

▶ Information from the broader population of runners should
also play a role.

▶ This shrinkage, this balancing of information from two
sources, is similar to the Bayesian paradigm of balancing the
information between the observed data and the prior.
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Model Selection

▶ So we have our choice of models: (1) complete pooling; (2)
no pooling; (3) varying intercepts; and (4) varying intercepts
and slopes.

▶ We can use our intuition to help decide which model we
should use, but we can formally check the models’ fit using
pp check.

▶ The prediction summary output and the ELPD values can
help us compare prediction accuracy for the competing
models.

▶ See R example: What do the criteria say about the choice
between “varying intercepts” and “varying intercepts and
slopes” models?
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Posterior Prediction of Race Time for a New Individual

▶ If we want to predict the race time for a new individual of a
certain age, we can use the posterior predict function
with our chosen model.

▶ We could also predict the race time for someone in our
sample, at a different age than we have already observed data
for that person.

▶ For example, consider predicting the race time at age 61 for:
runner 1; runner 10; and a new runner, Miles.

▶ Since we have no previous data on Miles, the prediction of
Miles’s age-61 race time will be much less precise (see R
plots).

▶ Section 17.7 has an interesting example on the spotify data
set in which they use a model to predict a song’s danceability
using its genre and its “valence” (mood). Read about it on
your own!
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