
STAT 535: Chapter 16:
Normal Hierarchical Models

David B. Hitchcock
E-Mail: hitchcock@stat.sc.edu

Spring 2024

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Chapter 16: Normal Hierarchical Models



An Example of Hierarchical Data

▶ In this chapter we will focus on the spotify data set in the
bayesrules package.

▶ This is a subset of a huge dataset of Spotify songs collected
by Kaylin Pavlik in 2019.

▶ The response variable is the popularity of 350 songs. Note
that artists (bands or singers) have multiple songs in this
data set, so the data are grouped (clustered).

▶ Popularity values for songs coming from the same artist are
likely to be correlated.
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Complete Pooled Approach

▶ We will first try pooling all the data together and ignoring the
grouping structure.

▶ Notation for our grouped data: Yij is the popularity of the
i-th song for artist j .

▶ And nj is the number of songs in the data set for artist j .

▶ Note that the first artist, Mia X, has 4 songs, so n1 = 4.

▶ The overall sample size is

n =
44∑
j=1

nj = n1 + n2 + · · ·+ n44 = 350.
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Complete Pooled Data Model

▶ If we ignore the grouping structure, we can assume the
popularity values follow a normal distribution with some mean
µ and variance σ2.

▶ Let’s check an estimated density for the popularity variable in
order to see whether the data look normal.

▶ Here is a formal Bayesian Normal-normal model:

Yij |µ, σ ∼ N(µ, σ2)

µ ∼ N(50, 522)

σ ∼ Exp(0.048)

▶ This assumes the most likely value for the overall mean µ is
50 (sensible since popularity values are between 0 and 100).

▶ Also, it is a weakly informative prior on σ.
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Meaning of Model Parameters

▶ In this model, the parameters µ and σ are global parameters:
They do not vary across artists.

▶ µ = global mean popularity and σ = global standard
deviation in popularity from song to song.

▶ Note that this model is equivalent to a normal regression
model with no predictors:

Yij = β0 + ϵij , ϵij ∼ N(0, σ2)

▶ We can estimate this using stan glm with a formula
popularity ∼ 1
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Drawback of Complete Pooling Model

▶ We can estimate our mean µ, based on its posterior, using
this approach.

▶ Drawback: If we want to predict the popularity of new songs
from several new artists, the predictions will be all the same.

▶ For any artist, the predicted popularity of a new song is the
posterior mean E (µ|y) = 58.39.

▶ In R, we can plot the posterior predictive means for each artist
based on this model (light blue dots) against the sample
means for each artist (dark blue).

▶ We see the posterior predictive means do not reflect the
actual differences in artist popularity at all: Bad model!
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No Pooled Model

▶ Now let’s use a “no pooling” approach: Allow each artist to
have his/her own mean popularity µj :

Yij |µj , σ ∼ N(µj , σ
2)

▶ Here, µj = mean song popularity for artist j and σ = the
standard deviation in popularity from song to song within
each artist.

▶ We are assuming the standard deviation is the same for artist
to artist, however. Does that match reality? (see R plot)

▶ Not really, but let’s go with this model for now, since
assuming a common σ keeps the model simpler.
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Formal No Pooling Model

▶ The data model has a lot of parameters: 44 + 1 = 45, to be
exact:

Yij |µj , σj ∼ N(µj , σ
2)

µj ∼ N(50, s2j )

σ ∼ Exp(0.048).

▶ We can estimate this with a regression model with a separate
coefficient for each level of “artist” and no intercept, using
the formula: popularity ∼ artist - 1

▶ The priors on the µj ’s are each given means of 50, but they
are weakly informative, so the data overwhelmed the weak
prior information.

▶ The result is that the posterior predictive distribution of
popularity for each artist is centered right at his/her sample
mean popularity (see R plot).
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Drawbacks of the No-Pooling Model

▶ This model assumes that the data on one artist cannot be
used to estimate the popularity of another artist.

▶ When we have small sample sizes for a group (artist, here),
then our inference about that artist’s mean popularity is not
precise.

▶ This model is also not generalizable: If you wanted to predict
the mean popularity of a song by an artist who is not in the
sample (for example, Taylor Swift), then we could not do it
with this model.

▶ This model only tells us about the artists in the sample, not
others in the wider population.
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A Better Approach: A Hierarchical Model

▶ To better handle this data set, we now will propose a
hierarchical model with three layers, describing:

1. how song popularity varies within artist j
2. how the artist-specific mean song popularity µj varies across

artists
3. prior models for the global parameters µ, σy , and σµ
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Within-Group Normal Model

▶ We will assume that data values within group j (i.e., artist j
here) follow a normal distribution:

Yij |µj , σy ∼ N(µj , σ
2
y )

▶ We see that each artist is allowed to have his/her own mean
song popularity µj , as with the no-pooling model.

▶ σy measures the within-group variability, i.e., the standard
deviation in popularity from song to song within each artist.

▶ This within-group variability is assumed to be the same for
each artist (may or may not be true in reality; it’s always a
good idea to check model assumptions through plots of the
data).
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Between-Group Layer

▶ Now, unlike in the no-pooling model, we include a layer that
recognizes that all our sampled artists are drawn from a single
population.

▶ We model the variation in mean popularity between (among)
artists by assuming a normal model for the µj ’s:

µj |µ, σµ ∼ N(µ, σ2
µ)

▶ The parameter µ (without a subscript) is the global average
of mean song popularity µjacross all artists.

▶ The parameter σµ is the between-group variability, i.e., the
standard deviation in mean popularity values µj among artists.

▶ Is the normality assumption for the µj ’s appropriate?
▶ We can’t observe the µj ’s themselves, but we can observe the

sample mean song popularity for each artist, which are
estimates of the µj ’s.

▶ An estimated density plot of the artist sample means (see R
code) shows the normality assumption looks reasonable.
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Priors on the Global Parameters

▶ For this to be a Bayesian model, we need to specify priors on
the global parameters µ, σy , and σµ.

▶ We will follow the textbook’s recommendations for these.

▶ We will let the prior on µ be Normal, specifically N(50, 522):
The overall mean of 50 is sensible, and the large variance
implies prior uncertainty.

▶ We will let the prior on σy be Exponential with rate 0.048.
Any distribution with support on (0,∞), like the gamma,
inverse-gamma, etc., would be reasonable.

▶ We will let the prior on σµ be Exponential with rate 1.
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Analysis of Variance

▶ This is a Bayesian version of the One-Way Analysis of
Variance (ANOVA) model.

▶ The goal of ANOVA is to compare the means of several
populations (groups) by comparing the between-group
variability and within-group variability.

▶ In our example, the artists are the groups, and we want to
estimate the 44 artist-level means µ1, . . . , µ44.

▶ Using ANOVA, we can break up the total variance in our Yij ’s
into within-group variance σ2

y and between-group variance σ2
µ:

Var(Yij) = σ2
y + σ2

µ
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Proportion of Variance Explained

▶ The textbook notes that

σ2
y

σ2
µ + σ2

y

= proportion of Var(Yij) that can be explained by
differences in the observations within each group

σ2
µ

σ2
µ + σ2

y

= proportion of Var(Yij) that can be explained by
differences between groups

▶ Note that
σ2
µ

σ2
µ + σ2

y

measures the within-group correlation,

e.g., the correlation between popularities of songs by the same
artist.

▶ Clearly, the model forces this correlation to be positive, which
makes sense.
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Fitting the Bayesian Model

▶ The posterior analysis can be done with the stan glmer

function.

▶ The syntax is similar to stan glm, with some slight
differences: Since “artist” is a grouping variable in the model
rather than a predictor, the formula is
popularity ∼ (1 | artist)

▶ The pp check function compares the posterior predictive
density to the observed data’s density in order to check model
fit (see R code).

▶ The Normal hierarchical model fits reasonably well, albeit not
perfectly.
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Posterior Inference about Model Parameters

▶ Posterior inference (point estimates, credible intervals) about
the global parameters is straightforward in R.

▶ A posterior point estimate for µ is 52.5, while an 80% credible
interval for µ is (49.3, 55.7).

▶ Posterior estimates of σµ and σy are 15.1 and 14.0,
respectively.

▶ Thus the estimate of the correlation in song popularity values
for songs from the same artist is

15.12

15.12 + 14.02
= 0.54

▶ This is a moderate positive (linear) association.
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Posterior Inference about Group-Specific Parameters

▶ We can also get point and interval estimates of the µj ’s (see
R code).

▶ Our point estimate for Beyoncé’s mean popularity is 69.1, and
with 80% posterior probability, her mean popularity is between
65.6 and 72.7.

▶ Our point estimate for Vampire Weekend’s mean popularity is
61.6, and with 80% posterior probability, their mean
popularity is between 54.8 and 68.5.

▶ Note the credible intervals’ widths vary from artist to artist.

▶ The wider intervals correspond to artists who have smaller
sample sizes (see Frank Ocean vs. Lil Skies).
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Posterior Prediction for an Artist in the Sample

▶ Suppose we wanted to predict the popularity of a new song by
an artist in the sample, say, Vampire Weekend.

▶ An 80% prediction interval for the popularity of a new song by
Vampire Weekend is (see R code) (42.5, 80.8).

▶ Note this is much wider than the 80% credible interval for
Vampire Weekend’s mean popularity µj .

▶ Does it make sense that we can predict their mean popularity
with more precision than we can predict the popularity of one
of their songs? Yes.
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Posterior Prediction for an Artist Not in the Sample

▶ Suppose we wanted to predict the popularity of a new song by
an artist in the broad population of artists, but not in the
sample, for example Taylor Swift.

▶ Recall that we could not do this with the no-pooling model.

▶ With the hierarchical model, we can use our knowledge about
the broader population to make such a prediction.

▶ We would (1) simulate a set of µj values for Swift from our
N(µ, σµ) distribution (while varying µ and σµ) according to
their own posterior distributions; and (2) simulate Y values
from the resulting N(µj , σy ) distribution (varying σy
according to its posterior).

▶ An 80% prediction interval for the popularity of a new song by
Taylor Swift is (see R code) (25.9, 78.9).
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Is this Prediction Accurate?

▶ In real life, do we really believe this prediction for the
popularity of a new song by Taylor Swift? Probably not.

▶ If our “new artist” were someone that we really had no
knowledge about, then the values in this prediction interval
would be sensible.

▶ But Taylor Swift is one of the most popular recording artists
in the world, so we would in reality expect her new song’s
popularity to be in the high range.

▶ To better reflect this, perhaps a more realistic model could
include a variable that measures the fact that Taylor is like,
totally awesome.

▶ Seriously, though, our model’s prediction of popularity of an
artist’s song would be better if we included one or more
artist-level variables like number of past Grammy nominations,
past radio airplay, etc.

▶ This is something explored in Chapter 17, in which the
hierarchical model includes one or more predictor variables.
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Shrinkage

▶ We can plot point and interval predictions (in light blue) of
new song popularities for all 44 artists in the sample.

▶ On the plot, we will also overlay the sample mean popularity
(in dark blue) for each artist (see plot).

▶ This shows the phenomenon called shrinkage: Our
hierarchical model’s predictions shrink (or pull) the artists’
sample means toward the global sample mean.

▶ Recall that the complete-pooling model would predict song
popularity using the global mean, and the no-pooling model
would predict song popularity using the artist’s own mean.

▶ So our hierarchical model is a balance of those models.
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How much Shrinkage?

▶ The artists whose own means are shrunk most toward the
global mean are the ones with the smallest sample size
(note these have the wide credible intervals for their µj ’s).

▶ This makes sense: If we have less data on an artist, we want
to borrow information from the other artists in the population
to help our prediction for that artist.

▶ If we have lots of data on an artist (Frank Ocean), then for
that person’s prediction, we don’t need to rely as much on the
data from other artists.

▶ Intuitive free throw example: Player A has made 98 of 100
free throws. Player B has made 3 of 3 free throws. Which
player do you believe has a higher probability of making her
next free throw?
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Grouping Variable or Predictor?

▶ We treated “artist” as a grouping variable in our model. Why
did we not treat it as a categorical predictor in an ordinary
linear model?

▶ If the levels of the variable in our sample are all the levels that
we care about, then we would include it as a predictor in the
model, for example like we did for our “track” variable in our
Poisson model with the academic awards.

▶ In that case, “academic”, “vocational”, and “general” were all
the levels of that variable and NOT a random sample from a
larger population of levels.

▶ In the Spotify example, the artists in the sample are a sample
from a large population of artists.

▶ Including “artist” as a grouping variable allows us to make
conclusions about the whole population of artistics, including
artists not in the sample.

▶ This is basically the same as the distinction between fixed
effects and random effects in classical ANOVA models.
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