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Regression for Binary Data

▶ We now consider a regression model in which a response
variable Y takes on exactly two values (Pass/Fail;
Survive/Die; Win/Loss, etc.), which we generally code as 0 or
1.

▶ The Normal or Poisson models clearly are not appropriate for
modeling a response variable of this type.

▶ When the response variable Y can only take values 0 or 1, its
expected value E (Y ) is the same as P(Y = 1).

▶ The model we will use will relate this E (Y ) to a predictor X
or set of predictors X1,X2, . . . ,Xp.
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Review: Odds and Probability

▶ Recall that if an event has probability π, then the odds of
that event are π/(1− π).

▶ We know the probability ranges from 0 to 1, so the odds can
take on values between 0 and ∞.

▶ The odds of an event are less than 1 if and only if the event’s
probability π < 0.5.

▶ The odds of an event are equal to 1 if and only if the event’s
probability π = 0.5.

▶ The odds of an event are greater than 1 if and only if the
event’s probability π > 0.5.
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Real Data Example: Logistic Regression Model

▶ Consider a sample of senior citizens, on whom two variables, a
binary Y and an (approximately) continuous X , are measured.

▶ The response variable measures whether the individual is
judged to be senile: Define Y = 0 if individual has no senility,
define Y = 1 if individual has senility present.

▶ Let X = the individual’s score on a subset of Wechler Adult
Intelligence Scale (WAIS) exam.
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Real Data Example: Logistic Regression Model

▶ Recall that when an individual’s response Yi is binary,
E (Yi ) = P(Yi = 1).

▶ We will model E (Yi ) = πi as a function of Xi , the WAIS score
for that individual.

▶ So the model for the mean response given the predictors is

Yi |β0, β1
ind∼ Bernoulli(πi ) with log

(
πi

1− πi

)
= β0 + β1Xi1

▶ So the “linear predictor” part of the model equation,
β0 + β1Xi1, is related to the log-odds that Yi = 1.

▶ We can also write this model equation in terms of the odds or
in terms of the probability that Yi = 1:

πi
1− πi

= eβ0+β1Xi1 and πi =
eβ0+β1Xi1

1 + eβ0+β1Xi1
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General Form of the Logistic Regression Model

▶ In a logistic regression model with several predictors, we have

log(odds) = log

(
π

1− π

)
= β0 + β1X1 + · · ·+ βpXp

▶ The interpretation of, say, β1 is as follows:

▶ Let oddsx be odds that Y = 1 when X1 = x and let oddsx+1

be odds that Y = 1 when X1 = x + 1 (an addition of one unit
for X1).

▶ Controlling for (holding constant) the other predictors
X2, . . . ,Xp, then β1 is the expected change in log-odds, and
eβ1 is the expected multiplicative change in odds that Y = 1
when X1 is increased by one unit:

β1 = log(oddsx+1)− log(oddsx) and eβ1 =
oddsx+1

oddsx
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Priors in the Logistic Regression Model

▶ We will need to specify priors on β0, β1, β2, . . . , βp.

▶ Typically we choose normal priors on these model coefficients.

▶ If we want to be objective, we could specify prior means of 0
for all the coefficients.

▶ We will have to use Metropolis-Hastings (either coding it
ourselves or using stan glm in rstanarm) to sample from the
posterior and estimate the parameters.

▶ See example with “noninformative” priors in R for the WAIS
senility data.
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Specifying Subjective Priors in the Logistic Regression
Model

▶ The book gives a process for eliciting prior information that
works well especially with the stan glm function.

▶ In the stan glm function, we place a prior on the “centered”
intercept. Here’s an example:

▶ We believe that a “typical” subject might have probability 0.2
to 0.6 of senility. So the log-odds of senility for such a person
should be between log(0.2/0.8) = −1.4 and
log(0.6/0.4) = 0.4.

▶ So set the prior mean for the CENTERED β0 (different from
the β0 in model) to be halfway between those, at -0.5.

▶ Set prior standard deviation to be half of the distance between
-0.5 and 0.4, so prior standard deviation = 0.45.
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More on Specifying Subjective Priors in the Logistic
Regression Model

▶ Here’s an example of specifying the prior mean and standard
deviation for β1:

▶ We believe that for a one-unit increase in WAIS score, the
odds of senility might be anywhere from half as large to the
same, i.e., between 0.5 and 1.

▶ So β1 might be between log(0.5) = −0.69 and log(1) = 0.

▶ So make prior mean on β1 to be -0.35 and prior standard
deviation around 0.175.
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Fitting the Logistic Regression Model

▶ We can specify the priors and use the stan glm function in
the rstanarm package to do the Metropolis-Hastings
automatically, as usual.

▶ We would still want to do our usual MCMC diagnostics and
(if necessary) remedial actions.

▶ The tidy function or summary function will again print
summaries of the posteriors for the model coefficients.

▶ See R examples for the fitting of the model.
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Interpretations of Estimated Parameters

▶ The posterior estimate of β1 is (around) -0.3 (it will change
slightly depending on the exact type of priors chosen and even
slightly based on the MCMC run).

▶ The odds of senility changes by a factor of e−0.3 = 0.74 (i.e.,
decreases by 26%) for each one-point increase in WAIS score.

▶ A 95% credible interval for β1 is (−0.498,−0.142), so there is
high posterior probability that a higher WAIS score is
associated with lower odds of senility.
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Using the Logistic Regression Model for Prediction

▶ One of the purposes of the logistic regression model is to
predict the binary response value for a new observation.

▶ For example, if we have a new senior citizen with WAIS score
of 10, we want to predict whether or not that person has
senility.

▶ One approach: Plug x = 10 into the estimated logistic

regression model, get ̂E (Y |X = 10), which is the estimated
probability that this person is senile.

▶ If this estimated probability exceeds 0.5, predict Y = 1 for
this individual; otherwise, predict Y = 0.

▶ Note that we could use a cutoff c other than 0.5 if we wish.
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Defining a Classification Rule

▶ When predicting a binary response using our fitted logistic
regression model, we are basically classifying an individual into
either the Y = 0 or the Y = 1 group.

▶ We could use a classification rule as follows to do this:

▶ For a particular x value (or set of x1, x2, . . . , xp values),
generate a large number of posterior predictions of Y .

▶ Let p be the proportion of those posterior predictions that
have Y = 1.

▶ For a chosen classification cutoff value c ∈ [0, 1], we classify
the individual with those specified predictor value(s) to the
Y = 1 group if p ≥ c ; otherwise classify this individual to the
Y = 0 group.
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Choice of Classification Cutoff Value

▶ The natural cutoff value to consider is c = 0.5, and this is
what is usually used.

▶ But sometimes a different value makes sense, especially if the
cost of one type of misclassification error is much greater than
the cost of the other type of error.

▶ In an example in the book, predicting Y = 1 corresponds to
predicting rain and Y = 0 corresponds to no rain.

▶ Is it worse to predict rain and carry an umbrella when no rain
actually falls, or to predict no rain, forgo the umbrella, and
get wet when rain actually falls?

▶ For this example, we might choose a smaller cutoff like
c = 0.25, so that we will play it safe and predict rain more
often.
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Assessing Model Quality

▶ We can again use the posterior predictive distribution to
assess model quality.

▶ The pp check function is a shortcut to generate many
posterior simulated data sets. For each one, we calculate the
count of Y = 1 values and plot these counts with a histogram.

▶ If the actual count of Y = 1 values from our observed data
set falls in the middle of this distribution, it is a sign that the
model fits well (see R example with WAIS data).
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Measuring Classification Accuracy

▶ When using the logistic regression model to classify binary
observation into one class or the other, we want to be able to
assess the accuracy of our classifications.

▶ A common way to do this is based on a confusion matrix.

▶ For a set of binary (0 or 1) observations, let Y denote the
actual binary value for an observation and let Ŷ denote the
predicted binary value based on whatever classification rule
we’ve decided on.

▶ For each individual in our sample, i = 1, . . . , n, we have the
Yi value and we can calculate the Ŷi value from our fitted
logistic regression model.
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Confusion Matrix

▶ The confusion matrix is the 2× 2 matrix with entries a, b, c ,
and d :

Ŷ = 0 Ŷ = 1

Y = 0 a b

Y = 1 c d

▶ The model’s overall accuracy captures the proportion of all
binary observations that are accurately classified:

overall accuracy =
a+ d

a+ b + c + d
.

▶ The misclassification rate is 1 minus the overall accuracy, or
b+c

a+b+c+d .
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Sensitivity and Specificity

▶ The model’s sensitivity (true positive rate) captures the
proportion of Y = 1 observations that are accurately
classified.

▶ The specificity (true negative rate) captures the proportion
of Y = 0 observations that are accurately classified.

sensitivity =
d

c + d
and specificity =

a

a+ b
.
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Aims of Sensitivity and Specificity

▶ Obviously we want both the sensitivity and specificity to be
high, but sometimes it makes sense practically to care more
about one than the other.

▶ If we are doing a medical test for a potentially deadly disease
(e.g., breast cancer) and classifying subjects as sick or healthy,
would we care more about having a high sensitivity or high
specificity?

▶ A high sensitivity would reduce the chance of a true cancer
doing undetected and thus a person with cancer going
untreated.

▶ If our procedure has lower specificity and we misclassify some
healthy people as sick, that may waste some time and money,
but the consequences would not be deadly.
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Tuning the Classification Rule based on Sensitivity and
Specificity

▶ Recall that the value of the cutoff c determines our
classification rule.

▶ We can try various values of c and, for each value, check
(in-sample) sensitivity and specificity based on the resulting
confusion matrix.

▶ It may be better to use cross-validation measures of sensitivity
and specificity to assess how well the model classifies new
(i.e., out-of-sample) observations.

▶ There is a tradeoff: As we lower c , sensitivity increases, but
specificity decreases. As we increase c, specificity increases,
but sensitivity decreases.
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Bayesian Logistic Regression with Multiple Predictors

▶ The logistic regression model extends naturally to having
several predictors, X1,X2, . . . ,Xp.

▶ Example from Book: Binary variable Y is whether it rains
tomorrow in Perth, Australia

▶ Predictors: X1 = humidity at 9 a.m. today, X2 = humidity at
3 p.m. today, X3 = whether it rains today (binary).

▶ Model equation in terms of the mean response is:

πi = E (Yi |x) =
eβ0+β1Xi1+β2Xi2+β3Xi3

1 + eβ0+β1Xi1+β2Xi2+β3Xi3
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Fitting of Bayesian Multiple Logistic Regression

▶ The (normal) priors on the β’s can be specified as usual.

▶ MCMC simulation from the posterior is done through direct
Metropolis-Hastings or automatically via stan glm.

▶ Estimated coefficents: β̂1 = −0.007, β̂2 = 0.08, β̂3 = 1.15
(values may change depending on priors and MCMC run).

▶ Inference about the β’s: The 95% credible interval for β1
includes 0: We may not need “humidity at 9 a.m. today” as a
predictor in the model, given that “humidity at 3 p.m.
today” and “rain today” are predictors in the model.

▶ The predictors may be strongly associated with each other,
which explains why we may not need all of them in the model.
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Model Selection in Bayesian Multiple Logistic Regression

▶ We can fit several models with different sets of predictors and
use our usual model selection tools (CV accuracy, ELPD, BIC,
etc.) to choose the “best” model.

▶ Rain example: Comparing the model with 3 predictors to a
model with only X1:

▶ The model with three predictors has a better CV accuracy,
higher ELPD, and lower BIC, so the model with three
predictors is preferred.

▶ However, a model that omits X1 and includes X2 and X3 is
slightly preferred over the 3-predictor model, based on these
criteria.
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