STAT 535: Chapter 13: Bayesian Logistic Regression Models

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu

Spring 2024

- We now consider a regression model in which a response variable Y takes on exactly two values (Pass/Fail; Survive/Die; Win/Loss, etc.), which we generally code as 0 or 1.
- The Normal or Poisson models clearly are not appropriate for modeling a response variable of this type.
- When the response variable Y can only take values 0 or 1, its expected value E(Y) is the same as P(Y = 1).
- The model we will use will relate this E(Y) to a predictor X or set of predictors X₁, X₂,..., X_p.

- Recall that if an event has probability π, then the odds of that event are π/(1 − π).
- We know the probability ranges from 0 to 1, so the odds can take on values between 0 and ∞.
- The odds of an event are less than 1 if and only if the event's probability π < 0.5.</p>
- The odds of an event are equal to 1 if and only if the event's probability $\pi = 0.5$.
- The odds of an event are greater than 1 if and only if the event's probability π > 0.5.

- Consider a sample of senior citizens, on whom two variables, a binary Y and an (approximately) continuous X, are measured.
- The response variable measures whether the individual is judged to be senile: Define Y = 0 if individual has no senility, define Y = 1 if individual has senility present.
- Let X = the individual's score on a subset of Wechler Adult Intelligence Scale (WAIS) exam.

Real Data Example: Logistic Regression Model

- Recall that when an individual's response Y_i is binary, E(Y_i) = P(Y_i = 1).
- We will model E(Y_i) = π_i as a function of X_i, the WAIS score for that individual.
- So the model for the mean response given the predictors is

$$Y_i | eta_0, eta_1 \stackrel{\mathit{ind}}{\sim} \mathsf{Bernoulli}(\pi_i) \hspace{0.2cm} ext{with} \hspace{0.2cm} \log\left(rac{\pi_i}{1-\pi_i}
ight) = eta_0 + eta_1 X_{i1}$$

- So the "linear predictor" part of the model equation, $\beta_0 + \beta_1 X_{i1}$, is related to the **log-odds** that $Y_i = 1$.
- We can also write this model equation in terms of the odds or in terms of the probability that Y_i = 1:

$$\frac{\pi_i}{1-\pi_i} = e^{\beta_0 + \beta_1 X_{i1}} \quad \text{and} \quad \pi_i = \frac{e^{\beta_0 + \beta_1 X_{i1}}}{1+e^{\beta_0 + \beta_1 X_{i1}}}$$

General Form of the Logistic Regression Model

▶ In a logistic regression model with several predictors, we have

$$\log(\text{odds}) = \log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- The interpretation of, say, β_1 is as follows:
- ► Let odds_x be odds that Y = 1 when X₁ = x and let odds_{x+1} be odds that Y = 1 when X₁ = x + 1 (an addition of one unit for X₁).
- Controlling for (holding constant) the other predictors X₂,..., X_p, then β₁ is the expected change in log-odds, and e^{β₁} is the expected **multiplicative** change in odds that Y = 1 when X₁ is increased by one unit:

$$eta_1 = \log(\operatorname{odds}_{x+1}) - \log(\operatorname{odds}_x) \quad \text{and} \quad e^{eta_1} = rac{\operatorname{odds}_{x+1}}{\operatorname{odds}_x}$$

- We will need to specify priors on $\beta_0, \beta_1, \beta_2, \ldots, \beta_p$.
- Typically we choose normal priors on these model coefficients.
- If we want to be objective, we could specify prior means of 0 for all the coefficients.
- We will have to use Metropolis-Hastings (either coding it ourselves or using stan_glm in rstanarm) to sample from the posterior and estimate the parameters.
- See example with "noninformative" priors in R for the WAIS senility data.

Specifying Subjective Priors in the Logistic Regression Model

- The book gives a process for eliciting prior information that works well especially with the stan_glm function.
- In the stan_glm function, we place a prior on the "centered" intercept. Here's an example:
- We believe that a "typical" subject might have probability 0.2 to 0.6 of senility. So the log-odds of senility for such a person should be between log(0.2/0.8) = −1.4 and log(0.6/0.4) = 0.4.
- So set the prior mean for the CENTERED β₀ (different from the β₀ in model) to be halfway between those, at -0.5.
- Set prior standard deviation to be half of the distance between -0.5 and 0.4, so prior standard deviation = 0.45.

More on Specifying Subjective Priors in the Logistic Regression Model

- Here's an example of specifying the prior mean and standard deviation for β₁:
- We believe that for a one-unit increase in WAIS score, the odds of senility might be anywhere from half as large to the same, i.e., between 0.5 and 1.
- So β_1 might be between $\log(0.5) = -0.69$ and $\log(1) = 0$.
- So make prior mean on β₁ to be -0.35 and prior standard deviation around 0.175.

- We can specify the priors and use the stan_glm function in the rstanarm package to do the Metropolis-Hastings automatically, as usual.
- We would still want to do our usual MCMC diagnostics and (if necessary) remedial actions.
- The tidy function or summary function will again print summaries of the posteriors for the model coefficients.
- See R examples for the fitting of the model.

- The posterior estimate of β₁ is (around) -0.3 (it will change slightly depending on the exact type of priors chosen and even slightly based on the MCMC run).
- The odds of senility changes by a factor of e^{-0.3} = 0.74 (i.e., decreases by 26%) for each one-point increase in WAIS score.
- A 95% credible interval for β₁ is (-0.498, -0.142), so there is high posterior probability that a higher WAIS score is associated with **lower** odds of senility.

Using the Logistic Regression Model for Prediction

- One of the purposes of the logistic regression model is to predict the binary response value for a new observation.
- For example, if we have a new senior citizen with WAIS score of 10, we want to predict whether or not that person has senility.
- One approach: Plug x = 10 into the estimated logistic regression model, get E(Y|X = 10), which is the estimated probability that this person is senile.
- If this estimated probability exceeds 0.5, predict Y = 1 for this individual; otherwise, predict Y = 0.
- Note that we could use a cutoff *c* other than 0.5 if we wish.

- When predicting a binary response using our fitted logistic regression model, we are basically classifying an individual into either the Y = 0 or the Y = 1 group.
- We could use a classification rule as follows to do this:
- For a particular x value (or set of x₁, x₂,..., x_p values), generate a large number of posterior predictions of Y.
- Let p be the proportion of those posterior predictions that have Y = 1.
- For a chosen classification cutoff value c ∈ [0, 1], we classify the individual with those specified predictor value(s) to the Y = 1 group if p ≥ c; otherwise classify this individual to the Y = 0 group.

Choice of Classification Cutoff Value

- The natural cutoff value to consider is c = 0.5, and this is what is usually used.
- But sometimes a different value makes sense, especially if the cost of one type of misclassification error is much greater than the cost of the other type of error.
- In an example in the book, predicting Y = 1 corresponds to predicting rain and Y = 0 corresponds to no rain.
- Is it worse to predict rain and carry an umbrella when no rain actually falls, or to predict no rain, forgo the umbrella, and get wet when rain actually falls?
- For this example, we might choose a smaller cutoff like c = 0.25, so that we will play it safe and predict rain more often.

- We can again use the posterior predictive distribution to assess model quality.
- The pp_check function is a shortcut to generate many posterior simulated data sets. For each one, we calculate the count of Y = 1 values and plot these counts with a histogram.
- If the actual count of Y = 1 values from our observed data set falls in the middle of this distribution, it is a sign that the model fits well (see R example with WAIS data).

- When using the logistic regression model to classify binary observation into one class or the other, we want to be able to assess the accuracy of our classifications.
- A common way to do this is based on a **confusion matrix**.
- For a set of binary (0 or 1) observations, let Y denote the actual binary value for an observation and let Ŷ denote the predicted binary value based on whatever classification rule we've decided on.
- ► For each individual in our sample, i = 1,..., n, we have the Y_i value and we can calculate the Ŷ_i value from our fitted logistic regression model.

The confusion matrix is the 2 × 2 matrix with entries a, b, c, and d:

The model's overall accuracy captures the proportion of all binary observations that are accurately classified:

overall accuracy =
$$\frac{a+d}{a+b+c+d}$$

The **misclassification rate** is 1 minus the overall accuracy, or $\frac{b+c}{a+b+c+d}$.

- The model's sensitivity (true positive rate) captures the proportion of Y = 1 observations that are accurately classified.
- The specificity (true negative rate) captures the proportion of Y = 0 observations that are accurately classified.

sensitivity
$$= \frac{d}{c+d}$$
 and specificity $= \frac{a}{a+b}$.

Aims of Sensitivity and Specificity

- Obviously we want both the sensitivity and specificity to be high, but sometimes it makes sense practically to care more about one than the other.
- If we are doing a medical test for a potentially deadly disease (e.g., breast cancer) and classifying subjects as sick or healthy, would we care more about having a high sensitivity or high specificity?
- A high sensitivity would reduce the chance of a true cancer doing undetected and thus a person with cancer going untreated.
- If our procedure has lower specificity and we misclassify some healthy people as sick, that may waste some time and money, but the consequences would not be deadly.

Tuning the Classification Rule based on Sensitivity and Specificity

- Recall that the value of the cutoff c determines our classification rule.
- We can try various values of c and, for each value, check (in-sample) sensitivity and specificity based on the resulting confusion matrix.
- It may be better to use cross-validation measures of sensitivity and specificity to assess how well the model classifies **new** (i.e., out-of-sample) observations.
- There is a tradeoff: As we lower c, sensitivity increases, but specificity decreases. As we increase c, specificity increases, but sensitivity decreases.

Bayesian Logistic Regression with Multiple Predictors

- The logistic regression model extends naturally to having several predictors, X₁, X₂,..., X_p.
- Example from Book: Binary variable Y is whether it rains tomorrow in Perth, Australia
- Predictors: X₁ = humidity at 9 a.m. today, X₂ = humidity at 3 p.m. today, X₃ = whether it rains today (binary).
- Model equation in terms of the mean response is:

$$\pi_i = \mathcal{E}(Y_i | \mathbf{x}) = \frac{e^{\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3}}}{1 + e^{\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3}}}$$

Fitting of Bayesian Multiple Logistic Regression

- The (normal) priors on the β 's can be specified as usual.
- MCMC simulation from the posterior is done through direct Metropolis-Hastings or automatically via stan_glm.
- ► Estimated coefficents: $\hat{\beta}_1 = -0.007$, $\hat{\beta}_2 = 0.08$, $\hat{\beta}_3 = 1.15$ (values may change depending on priors and MCMC run).
- Inference about the β's: The 95% credible interval for β₁ includes 0: We may not need "humidity at 9 a.m. today" as a predictor in the model, given that "humidity at 3 p.m. today" and "rain today" are predictors in the model.
- The predictors may be strongly associated with each other, which explains why we may not need all of them in the model.

Model Selection in Bayesian Multiple Logistic Regression

- We can fit several models with different sets of predictors and use our usual model selection tools (CV accuracy, ELPD, BIC, etc.) to choose the "best" model.
- Rain example: Comparing the model with 3 predictors to a model with only X₁:
- The model with three predictors has a better CV accuracy, higher ELPD, and lower BIC, so the model with three predictors is preferred.
- However, a model that omits X₁ and includes X₂ and X₃ is slightly preferred over the 3-predictor model, based on these criteria.