STAT 509 - Section 3.6: Sampling Distributions
Definition: Parameter $=$ a number that characterizes a population (example: population mean μ) - it's typically unknown.
$\underline{\text { Statistic }}=\mathbf{a}$ number that characterizes a sample (example: sample mean $\overline{\mathbf{Y}}$) - we can calculate it from our sample data.
$\overline{\mathbf{Y}}=$

We use the sample mean $\overline{\mathbf{Y}}$ to estimate the population mean μ. Suppose we take a sample and calculate $\overline{\mathbf{Y}}$. Will $\overline{\mathbf{Y}}$ equal μ ? Will $\overline{\mathbf{Y}}$ be close to μ ?
Suppose we take another sample and get another $\overline{\mathbf{Y}}$. Will it be same as first $\overline{\mathbf{Y}}$? Will it be close to first $\overline{\mathbf{Y}}$?

- What if we took many repeated samples (of the same size) from the same population, and each time, calculated the sample mean?
What would that set of $\overline{\mathbf{Y}}$ values look like?

The sampling distribution of a statistic is the distribution of values of the statistic in all possible samples (of the same size) from the same population.

Consider the sampling distribution of the sample mean

 $\overline{\mathbf{Y}}$ when we take samples of size \boldsymbol{n} from a population with mean μ and variance σ^{2}.Picture:

The sampling distribution of $\overline{\mathbf{Y}}$ has mean μ and standard deviation σ / \sqrt{n}.

Notation:

Central Limit Theorem

We have determined the center and the spread of the sampling distribution of $\overline{\mathbf{Y}}$. What is the shape of its sampling distribution?

Case I: If the distribution of the original data is normal, the sampling distribution of $\overline{\mathbf{Y}}$ is normal. (This is true no matter what the sample size is.)

Case II: Central Limit Theorem: If we take a random sample (of size n) from any population with mean μ and standard deviation σ, the sampling distribution of Y is approximately normal, if the sample size is large.

How large does \boldsymbol{n} have to be?
One rule of thumb: If $n \geq \mathbf{3 0}$, we can apply the CLT result.

Depends on the shape of the population distribution:

- If the data come from a distribution that is nearly normal, sample size need not be very large to invoke CLT.
- If the data come from a distribution that is far from normal, sample size must be very large to invoke CLT.

Pictures:

As \boldsymbol{n} gets larger, the closer the sampling distribution looks to a normal distribution.

- Checking how close data are to being normally distributed can be done via normal probability plots.
- Normal probability (Q-Q) plots plot the ordered data values against corresponding $\mathbf{N}(0,1)$ quantiles:

Ordered data: $\boldsymbol{Y}_{(\mathbf{1})}, Y_{(\mathbf{2})}, \ldots, Y_{(\mathrm{n})}$
Normal Quantiles: z -values with area $\mathrm{P}_{(\mathrm{i})}$ to their left, for $i=1, \ldots, n$,
where $P_{(i)}=(i-0.5) / n$

- In practice this is always plotted on a computer.

R code:
> qqnorm(mydata)

- If the plotted points fall in roughly a straight line, the assumption that the data are nearly normally distributed is reasonable.
- If the plotted points form a curve or an S-shape, then the data are not close to normal, and we need quite a large sample size to apply the CLT.
- Similar types of Q-Q plot can be used to check whether data may come from other specific distributions.

Why is the CLT important? Because when $\overline{\mathbf{Y}}$ is (approximately) normally distributed, we can answer probability questions about the sample mean. Standardizing values of $\overline{\mathbf{Y}}$:
If $\overline{\mathbf{Y}}$ is normal with mean μ and standard deviation σ / \sqrt{n}, then

$$
Z=\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}
$$

has a standard normal distribution.
Example: The time between adjacent accidents in an industrial plant follows an exponential distribution with an average of $\mathbf{7 0 0}$ days. What is the probability that the average time between 49 pairs of adjacent accidents will be greater than $\mathbf{9 0 0}$ days?

Other Sampling Distributions

In practice, the population standard deviation σ is typically unknown.

We estimate σ with the sample standard deviation s,
where the sample variance $s^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}$
But the quantity $\frac{\bar{Y}-\mu}{s / \sqrt{n}}$ does not have a standard normal distribution.

Its sampling distribution is as follows:

- If the data come from a normal population, then the statistic $T=\frac{\bar{Y}-\mu}{s / \sqrt{n}}$ has a t-distribution ("Student's t") with $n-1$ degrees of freedom (the parameter of the t-distribution).
- The t-distribution resembles the standard normal (symmetric, mound-shaped, centered at zero) but it is more spread out.
- The fewer the degrees of freedom, the more spread out the t-distribution is.
- As the d.f. increase, the t-distribution gets closer to the standard normal.

Picture:

Table 2 gives values of the t-distribution with specific areas to the left of these values.

Example: The nominal power produced by a studentdesigned internal combustion engine is 100 hp . The student team that designed the engine conducted 10 tests to determine the actual power. The data were: $97.9100 .8102 .0 \quad 97.0100 .8 \quad 97.9100 .1$ $91.9 \quad 98.1 \quad 99.9$

Note for these data, $n=10, \overline{\mathrm{Y}}=98.64, s=2.864$.

Assuming the data came from a normal distribution, what is the probability of getting a sample mean of 98.64 hp or less if the true mean is actually 100 hp ?

Picture:

R code:

> pt(-1.502, df=9)
[1] 0.08367136

Is the normality assumption reasonable?

The χ^{2} (Chi-square) Distribution

Suppose our sample (of size n) comes from a normal population with mean μ and standard deviation σ.

Then $\frac{(n-1) s^{2}}{\sigma^{2}}$ has a $\boldsymbol{\chi}^{\mathbf{2}}$ distribution with $\boldsymbol{n}-\mathbf{1}$ degrees of freedom.

- The χ^{2} distribution takes on positive values.
- It is skewed to the right.
- It is less skewed for higher degrees of freedom.
- The mean of a χ^{2} distribution with $n-1$ degrees of freedom is $n-1$ and the variance is $2(n-1)$.

Fact: If we add the squares of \boldsymbol{n} independent standard normal r.v.'s, the resulting sum has a $\boldsymbol{\chi}_{\mathbf{n}}^{\mathbf{n}}$ distribution.
Note that $\frac{(n-1) s^{2}}{\sigma^{2}}=$

We sacrifice 1 d.f. by estimating μ with \bar{Y}, so it is $\chi^{2}{ }_{n-1}$.

Table 3 gives values of a χ^{2} r.v. with specific areas to the left of those values.

Examples:

For χ^{2} with 6 d.f., area to the left of ___ is $\mathbf{1 0}$.

For χ^{2} with 6 d.f., area to the left of \qquad is $\mathbf{. 9 5}$.

For χ^{2} with 20 d.f., area to the left of ___ is $\mathbf{9 0}$.

The F Distribution

The quantity $\frac{\chi_{n_{1}-1}^{2} /\left(n_{1}-1\right)}{\chi_{n_{2}-1}^{2} /\left(n_{2}-1\right)}$ where the two χ^{2} r.v.'s are independent, has an F -distribution with $\boldsymbol{n}_{1}-1$ "numerator degrees of freedom" and $n_{2}-1$ denominator degrees of freedom.

So, if we have independent samples (of sizes \boldsymbol{n}_{1} and \boldsymbol{n}_{2}) from two normal populations, note:
has an F-distribution with $\left(n_{1}-1, n_{2}-1\right)$ d.f.

Table 4 ($\mathbf{p} .580$) gives values of F r.v. with area .10 to the right. Table 4 (p. 582) gives values of F r.v. with area .05 to the right. Table 4 (p. 584) gives values of F r.v. with area .01 to the right.

Verify:

For \mathbf{F} with $(\mathbf{3}, 9)$ d.f., 2.81 has area 0.10 to right.
For \mathbf{F} with $(15,13)$ d.f., 3.82 has area 0.01 to right.

- These sampling distributions will be important in many inferential procedures we will learn.

