STAT 509 - Section 3.2: Discrete Random Variables
Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

Notation: Capital letters (like Y) denote a random variable. Lowercase letters (like y) denote possible values of the random variable.

Discrete Random Variable: A numerical r.v. that takes on a countable number of values (there are gaps in the range of possible values).

Examples:

1. Number of phone calls received in a day by a company
2. Number of heads in $\mathbf{5}$ tosses of a coin

Continuous Random Variable: A numerical r.v. that takes on an uncountable number of values (possible values lie in an unbroken interval).

Examples:

1. Length of nails produced at a factory
2. Time in $\mathbf{1 0 0}$-meter dash for runners

Other examples?

The probability distribution of a random variable is a graph, table, or formula which tells what values the r.v. can take and the probability that it takes each of those values.

Example 1: A design firm submits bids for four projects. Let $Y=$ number of successful bids.

y	0	1	2	3	4
$\mathbf{P}(y)$	0.06	0.35	0.43	0.15	0.01

Example 2: Toss 2 coins. The r.v. $Y=$ number of heads showing.

y	0	1	2
$\mathbf{P}(y)$	$1 / 4$	$1 / 2$	$1 / 4$

Graph for Example 1:

For any probability distribution:
(1) $\mathrm{P}(y)$ is between 0 and 1 for any value of y.
(2) $\sum_{y} P(y)=1$. That is, the sum of the probabilities for all possible y values is 1 .

Example 3: $P(y)=y / 10$ for $y=1,2,3,4$.

Valid Probability Distribution? Property 1?

Property 2?

Cumulative Distribution Function:
If Y is a random variable, then the cumulative distribution function (cdf) is denoted by $\mathrm{F}(\mathrm{y})$. $\mathrm{F}(\mathrm{y})=\mathrm{P}(\mathrm{Y} \leq y)$
cdf for r.v. in Example 1?

Graph of cdf:

Expected Value of a Discrete Random Variable

The expected value of a r.v. is its mean (i.e., the mean of its probability distribution).

For a discrete r.v. Y, the expected value of Y, denoted μ or $E(Y)$, is:

$$
\boldsymbol{\mu}=\mathbf{E}(\boldsymbol{Y})=\sum_{y} y P(y)
$$

where \sum_{y} represents a summation over all values of Y.
Recall Example 3:
$\mu=$
Here, the expected value of y is
Recall Example 1: What is the expected number of successful design bids?
$E(Y)=$

So on average, a firm in this situation would win \qquad bids.

The expected value does not have to be a possible value of the r.v. --- it's an average value.

Variance of a Discrete Random Variable

The variance σ^{2} is the expected value of the squared deviation from the mean μ; that is, $\sigma^{2}=\mathrm{E}\left[(Y-\mu)^{2}\right]$.

$$
\sigma^{2}=\Sigma(y-\mu)^{2} \mathbf{P}(y)
$$

Shortcut formula:

$$
\sigma^{2}=\left[\sum_{y} y^{2} P(y)\right]-\mu^{2}
$$

where \sum_{y} represents a summation over all values of \boldsymbol{y}.

Example 3: Recall $\mu=3$ for this r.v.

$\Sigma y^{2} P(y)=$

Thus $\sigma^{2}=$

Note that the standard deviation σ of the r.v. is the square root of σ^{2}. So for Example 3, $\sigma=$

Example 1: Recall $\mu=1.7$ for this r.v.
$\Sigma y^{2} \mathrm{P}(y)=$
Thus $\sigma^{2}=$
and $\sigma=$

Some Rules for Expected Values and Variances

If \boldsymbol{c} is a constant number,

- $\mathrm{E}(\mathrm{c})=c$
- $\mathrm{E}(c \mathrm{Y})=c \mathrm{E}(\boldsymbol{Y})$

If X and Y are two random variables,

- $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$

And:

- $\operatorname{var}(c)=0$
- $\operatorname{var}(c Y)=c^{2} \operatorname{var}(Y)$

If X and Y are two independent random variables,
$\cdot \operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$

The Binomial Random Variable

- Many experiments have responses with 2 possibilities (Yes/No, Pass/Fail).
- Certain experiments called binomial experiments yield a type of r.v. called a binomial random variable.

Characteristics of a binomial experiment:
(1) The experiment consists of a number (denoted n) of identical trials.
(2) There are only two possible outcomes for each trial - denoted "Success" (S) or "Failure" (F)
(3) The probability of success (denoted p) is the same for each trial.
(Probability of failure $=q=1-p$.
(4) The trials are independent.

Then the binomial r.v. (denoted Y) is the number of successes in the \boldsymbol{n} trials.

Example 1: A factory makes 25 bricks in an hour. Suppose typically 5% of all bricks produced are nonconforming. Let $Y=$ total number of nonconforming bricks. Then Y is

Example 2: A student randomly guesses answers on a multiple choice test with 3 questions, each with 4 possible answers. $Y=$ number of correct answers. Then Y is

What is the probability distribution for Y in this case?
Outcome
\underline{y}
P(outcome)

Probability Distribution of \boldsymbol{Y}

\underline{y}
 $\underline{P(y)}$

General Formula: (Binomial Probability Distribution) ($n=$ number of trials, $p=$ probability of success.) The probability there will be exactly \boldsymbol{y} successes is: $p(y)=\binom{n}{y} p^{y} q^{n-y} \quad(y=0,1,2, \ldots, n)$ where

$$
\begin{aligned}
\binom{n}{y} & =" n \text { choose } y " \\
& =\frac{n!}{y!(n-y)!}
\end{aligned}
$$

Here, $\mathbf{0}!=1,1!=1,2!=\mathbf{2} \cdot 1=2,3!=\mathbf{3 \cdot 2 \cdot 1}=6$, etc.
Example 1(a): Out of 25 bricks produced, what is the probability of exactly 2 nonconforming bricks?

Example 1(b): Out of 25 bricks produced, what is the probability of at least 1 nonconforming brick?

Example 1(c): Out of 25 bricks produced, what is the probability of at least 2 nonconforming bricks?

- The mean (expected value) of a binomial r.v. is $\mu=n p$.
- The variance of a binomial r.v. is $\sigma^{2}=n p q$.
- The standard deviation of a binomial r.v. is $\sigma=$

Example: What is the mean number of nonconforming bricks that we would expect out of the 25 produced?
$\mu=n p=$
What is the standard deviation of this binomial r.v.?

Abstract

Finding Binomial Probabilities using \mathbf{R} Hand calculations of binomial probabilities can be tedious at times.

Example 1(c): Out of 25 bricks produced, what is the probability of at least $\mathbf{6}$ nonconforming bricks?
$>$ sum(dbinom(6:25, size $=25$, prob $=0.05)$)
[1] 0.001212961

Example 4: Historically, $\mathbf{1 0 \%}$ of homes in Florida have radon levels higher than that recommended by EPA.

- In a random sample of $\mathbf{2 0}$ homes, find the probability that exactly 3 have radon levels higher than the EPA recommendation.
- In a random sample of $\mathbf{2 0}$ homes, find the probability that more than $\mathbf{4}$ have radon levels higher than the EPA recommendation.
- In a random sample of $\mathbf{2 0}$ homes, find the probability that between 2 and 5 have radon levels higher than the EPA recommendation.

Sampling without replacement:

The Hypergeometric Distribution

- If we take a sample (without replacement) of size n from a finite collection of N objects (r of which are "successes"), then the number of successes Y in our sample is not binomial. Why not?
- It follows a hypergeometric distribution. The probability function of Y is:

$$
\mathbf{P}(\boldsymbol{y})=\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}} \text { for } \boldsymbol{y}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}
$$

- The mean (expected value) of \boldsymbol{Y} is $\boldsymbol{\mu}=\mathbf{E}(\boldsymbol{Y})=n \frac{r}{N}$

Example: Suppose a factory makes 100 filters per day, 5 of which are defective. If we randomly sample (without replacement) $\mathbf{1 5}$ of these filters, what is the expected number of defective filters in the sample?

What is the probability that exactly 1 of the sampled filters will be defective?

Poisson Random Variables

The Poisson distribution can be used to model the number of events occurring in a continuous time or space.

- Number of telephone calls received per hour
- Number of claims received per day by an insurance company
- Number of accidents per month at an intersection
- Number of breaks per 1000 meters of copper wire.

The mean number of events (per 1-unit interval) for a Poisson distribution is denoted λ.

Which values can a Poisson r.v. take?

Probability distribution for \boldsymbol{Y}
(if Y is Poisson with mean λ)

$$
\mathbf{P}(y)=\frac{\lambda^{y} \mathrm{e}^{-\lambda}}{y!} \quad(\text { for } y=0,1,2, \ldots)
$$

Mean of Poisson probability distribution: λ
Variance of Poisson probability distribution: λ

- If we record the number of occurrences Y in t units of time or space, then the probability distribution for Y is:

$$
\mathrm{P}(y)=\left(\frac{(\lambda t)^{y} \mathrm{e}^{-\lambda t}}{} \quad(\text { for } y=0,1,2, \ldots)\right.
$$

Example 1(a): Historically a process has averaged 2.6 breaks in the insulation per 1000 meters of wire. What is the probability that 1000 meters of wire will have 1 or fewer breaks in insulation?

Example 1(b): What is the probability that 3000 meters of wire will have 1 or fewer breaks in insulation?

Now, $\mathrm{E}(\boldsymbol{Y})=\underline{\lambda t}=$

Abstract

Finding Poisson Probabilities using R Hand calculations of Poisson probabilities can be tedious at times.

Example 1(c): What is the probability that 1000 meters of wire will have between 3 and 7 breaks in insulation?

```
> sum(dpois(3:7, lambda = 2.6))
```

[1] 0.4762367
Example 1(d): What is the probability that 2000 meters of wire will have at least 4 breaks in insulation?

1 - $\operatorname{sum}($ dpois ($0: 3$, lambda $=2.6$ * 2) $)$

Conditions for a Poisson Process

1) Areas of inspection are independent of one another.
2) The probability of the event occurring at any particular point in space or time is negligible.
3) The mean remains constant over all areas/intervals of inspection.

Example 2: Suppose we average 5 radioactive particles passing a counter in 1 millisecond. What is the probability that exactly 10 particles will pass in the next three milliseconds? 10 or fewer particles?

